| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exss | Unicode version | ||
| Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| Ref | Expression |
|---|---|
| exss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0m 3272 |
. . 3
| |
| 2 | df-rab 2357 |
. . . . 5
| |
| 3 | 2 | eleq2i 2145 |
. . . 4
|
| 4 | 3 | exbii 1536 |
. . 3
|
| 5 | 1, 4 | bitr3i 184 |
. 2
|
| 6 | vex 2604 |
. . . . . 6
| |
| 7 | 6 | snss 3516 |
. . . . 5
|
| 8 | ssab2 3078 |
. . . . . 6
| |
| 9 | sstr2 3006 |
. . . . . 6
| |
| 10 | 8, 9 | mpi 15 |
. . . . 5
|
| 11 | 7, 10 | sylbi 119 |
. . . 4
|
| 12 | simpr 108 |
. . . . . . . 8
| |
| 13 | equsb1 1708 |
. . . . . . . . 9
| |
| 14 | velsn 3415 |
. . . . . . . . . 10
| |
| 15 | 14 | sbbii 1688 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbir 144 |
. . . . . . . 8
|
| 17 | 12, 16 | jctil 305 |
. . . . . . 7
|
| 18 | df-clab 2068 |
. . . . . . . 8
| |
| 19 | sban 1870 |
. . . . . . . 8
| |
| 20 | 18, 19 | bitri 182 |
. . . . . . 7
|
| 21 | df-rab 2357 |
. . . . . . . . 9
| |
| 22 | 21 | eleq2i 2145 |
. . . . . . . 8
|
| 23 | df-clab 2068 |
. . . . . . . . 9
| |
| 24 | sban 1870 |
. . . . . . . . 9
| |
| 25 | 23, 24 | bitri 182 |
. . . . . . . 8
|
| 26 | 22, 25 | bitri 182 |
. . . . . . 7
|
| 27 | 17, 20, 26 | 3imtr4i 199 |
. . . . . 6
|
| 28 | elex2 2615 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | rabn0m 3272 |
. . . . 5
| |
| 31 | 29, 30 | sylib 120 |
. . . 4
|
| 32 | 6 | snex 3957 |
. . . . 5
|
| 33 | sseq1 3020 |
. . . . . 6
| |
| 34 | rexeq 2550 |
. . . . . 6
| |
| 35 | 33, 34 | anbi12d 456 |
. . . . 5
|
| 36 | 32, 35 | spcev 2692 |
. . . 4
|
| 37 | 11, 31, 36 | syl2anc 403 |
. . 3
|
| 38 | 37 | exlimiv 1529 |
. 2
|
| 39 | 5, 38 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |