ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f10 Unicode version

Theorem f10 5180
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10  |-  (/) : (/) -1-1-> A

Proof of Theorem f10
StepHypRef Expression
1 f0 5100 . 2  |-  (/) : (/) --> A
2 fun0 4977 . . 3  |-  Fun  (/)
3 cnv0 4747 . . . 4  |-  `' (/)  =  (/)
43funeqi 4942 . . 3  |-  ( Fun  `' (/)  <->  Fun  (/) )
52, 4mpbir 144 . 2  |-  Fun  `' (/)
6 df-f1 4927 . 2  |-  ( (/) :
(/) -1-1-> A  <->  ( (/) : (/) --> A  /\  Fun  `' (/) ) )
71, 5, 6mpbir2an 883 1  |-  (/) : (/) -1-1-> A
Colors of variables: wff set class
Syntax hints:   (/)c0 3251   `'ccnv 4362   Fun wfun 4916   -->wf 4918   -1-1->wf1 4919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927
This theorem is referenced by:  fo00  5182
  Copyright terms: Public domain W3C validator