| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
| Ref | Expression |
|---|---|
| f1o00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 5154 |
. 2
| |
| 2 | fn0 5038 |
. . . . . 6
| |
| 3 | 2 | biimpi 118 |
. . . . 5
|
| 4 | 3 | adantr 270 |
. . . 4
|
| 5 | dm0 4567 |
. . . . 5
| |
| 6 | cnveq 4527 |
. . . . . . . . . 10
| |
| 7 | cnv0 4747 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl6eq 2129 |
. . . . . . . . 9
|
| 9 | 2, 8 | sylbi 119 |
. . . . . . . 8
|
| 10 | 9 | fneq1d 5009 |
. . . . . . 7
|
| 11 | 10 | biimpa 290 |
. . . . . 6
|
| 12 | fndm 5018 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | 5, 13 | syl5reqr 2128 |
. . . 4
|
| 15 | 4, 14 | jca 300 |
. . 3
|
| 16 | 2 | biimpri 131 |
. . . . 5
|
| 17 | 16 | adantr 270 |
. . . 4
|
| 18 | eqid 2081 |
. . . . . 6
| |
| 19 | fn0 5038 |
. . . . . 6
| |
| 20 | 18, 19 | mpbir 144 |
. . . . 5
|
| 21 | 8 | fneq1d 5009 |
. . . . . 6
|
| 22 | fneq2 5008 |
. . . . . 6
| |
| 23 | 21, 22 | sylan9bb 449 |
. . . . 5
|
| 24 | 20, 23 | mpbiri 166 |
. . . 4
|
| 25 | 17, 24 | jca 300 |
. . 3
|
| 26 | 15, 25 | impbii 124 |
. 2
|
| 27 | 1, 26 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: fo00 5182 f1o0 5183 en0 6298 |
| Copyright terms: Public domain | W3C validator |