| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1osng | Unicode version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1osng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3409 |
. . . 4
| |
| 2 | f1oeq2 5138 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | opeq1 3570 |
. . . . 5
| |
| 5 | 4 | sneqd 3411 |
. . . 4
|
| 6 | f1oeq1 5137 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 3, 7 | bitrd 186 |
. 2
|
| 9 | sneq 3409 |
. . . 4
| |
| 10 | f1oeq3 5139 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | opeq2 3571 |
. . . . 5
| |
| 13 | 12 | sneqd 3411 |
. . . 4
|
| 14 | f1oeq1 5137 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 11, 15 | bitrd 186 |
. 2
|
| 17 | vex 2604 |
. . 3
| |
| 18 | vex 2604 |
. . 3
| |
| 19 | 17, 18 | f1osn 5186 |
. 2
|
| 20 | 8, 16, 19 | vtocl2g 2662 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: f1oprg 5188 fsnunf 5383 dif1en 6364 1fv 9149 |
| Copyright terms: Public domain | W3C validator |