ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1stres Unicode version

Theorem f1stres 5806
Description: Mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A

Proof of Theorem f1stres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . . . . 8  |-  y  e. 
_V
2 vex 2604 . . . . . . . 8  |-  z  e. 
_V
31, 2op1sta 4822 . . . . . . 7  |-  U. dom  {
<. y ,  z >. }  =  y
43eleq1i 2144 . . . . . 6  |-  ( U. dom  { <. y ,  z
>. }  e.  A  <->  y  e.  A )
54biimpri 131 . . . . 5  |-  ( y  e.  A  ->  U. dom  {
<. y ,  z >. }  e.  A )
65adantr 270 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. dom  { <. y ,  z >. }  e.  A )
76rgen2 2447 . . 3  |-  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z >. }  e.  A
8 sneq 3409 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98dmeqd 4555 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  dom  { x }  =  dom  { <. y ,  z >. } )
109unieqd 3612 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  z >. } )
1110eleq1d 2147 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. dom  { x }  e.  A  <->  U.
dom  { <. y ,  z
>. }  e.  A ) )
1211ralxp 4497 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z
>. }  e.  A )
137, 12mpbir 144 . 2  |-  A. x  e.  ( A  X.  B
) U. dom  {
x }  e.  A
14 df-1st 5787 . . . . 5  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
1514reseq1i 4626 . . . 4  |-  ( 1st  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )
16 ssv 3019 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4676 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } ) )
1816, 17ax-mp 7 . . . 4  |-  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
1915, 18eqtri 2101 . . 3  |-  ( 1st  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
2019fmpt 5340 . 2  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A )
2113, 20mpbi 143 1  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    C_ wss 2973   {csn 3398   <.cop 3401   U.cuni 3601    |-> cmpt 3839    X. cxp 4361   dom cdm 4363    |` cres 4365   -->wf 4918   1stc1st 5785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-1st 5787
This theorem is referenced by:  fo1stresm  5808  1stcof  5810
  Copyright terms: Public domain W3C validator