| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpt | Unicode version | ||
| Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| fmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt.1 |
. . . 4
| |
| 2 | 1 | fnmpt 5045 |
. . 3
|
| 3 | 1 | rnmpt 4600 |
. . . 4
|
| 4 | r19.29 2494 |
. . . . . . 7
| |
| 5 | eleq1 2141 |
. . . . . . . . 9
| |
| 6 | 5 | biimparc 293 |
. . . . . . . 8
|
| 7 | 6 | rexlimivw 2473 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 113 |
. . . . 5
|
| 10 | 9 | abssdv 3068 |
. . . 4
|
| 11 | 3, 10 | syl5eqss 3043 |
. . 3
|
| 12 | df-f 4926 |
. . 3
| |
| 13 | 2, 11, 12 | sylanbrc 408 |
. 2
|
| 14 | 1 | mptpreima 4834 |
. . . 4
|
| 15 | fimacnv 5317 |
. . . 4
| |
| 16 | 14, 15 | syl5reqr 2128 |
. . 3
|
| 17 | rabid2 2530 |
. . 3
| |
| 18 | 16, 17 | sylib 120 |
. 2
|
| 19 | 13, 18 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 |
| This theorem is referenced by: f1ompt 5341 fmpti 5342 fmptd 5343 rnmptss 5347 f1oresrab 5350 idref 5417 f1mpt 5431 f1stres 5806 f2ndres 5807 fmpt2x 5846 fmpt2co 5857 iunon 5922 dom2lem 6275 uzf 8622 |
| Copyright terms: Public domain | W3C validator |