![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unieqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | unieq 3610 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-uni 3602 |
This theorem is referenced by: uniprg 3616 unisng 3618 unisn3 4198 onsucuni2 4307 opswapg 4827 elxp4 4828 elxp5 4829 iotaeq 4895 iotabi 4896 uniabio 4897 funfvdm 5257 funfvdm2 5258 fvun1 5260 fniunfv 5422 funiunfvdm 5423 1stvalg 5789 2ndvalg 5790 fo1st 5804 fo2nd 5805 f1stres 5806 f2ndres 5807 2nd1st 5826 cnvf1olem 5865 brtpos2 5889 dftpos4 5901 tpostpos 5902 recseq 5944 tfrexlem 5971 xpcomco 6323 xpassen 6327 xpdom2 6328 supeq1 6399 supeq2 6402 supeq3 6403 supeq123d 6404 dfinfre 8034 |
Copyright terms: Public domain | W3C validator |