ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg Unicode version

Theorem fabexg 5097
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)    D( x)    F( x)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4470 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
2 pwexg 3954 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
3 fabexg.1 . . . . 5  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
4 fssxp 5078 . . . . . . . 8  |-  ( x : A --> B  ->  x  C_  ( A  X.  B ) )
5 selpw 3389 . . . . . . . 8  |-  ( x  e.  ~P ( A  X.  B )  <->  x  C_  ( A  X.  B ) )
64, 5sylibr 132 . . . . . . 7  |-  ( x : A --> B  ->  x  e.  ~P ( A  X.  B ) )
76anim1i 333 . . . . . 6  |-  ( ( x : A --> B  /\  ph )  ->  ( x  e.  ~P ( A  X.  B )  /\  ph ) )
87ss2abi 3066 . . . . 5  |-  { x  |  ( x : A --> B  /\  ph ) }  C_  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }
93, 8eqsstri 3029 . . . 4  |-  F  C_  { x  |  ( x  e.  ~P ( A  X.  B )  /\  ph ) }
10 ssab2 3078 . . . 4  |-  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }  C_  ~P ( A  X.  B )
119, 10sstri 3008 . . 3  |-  F  C_  ~P ( A  X.  B
)
12 ssexg 3917 . . 3  |-  ( ( F  C_  ~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  F  e.  _V )
1311, 12mpan 414 . 2  |-  ( ~P ( A  X.  B
)  e.  _V  ->  F  e.  _V )
141, 2, 133syl 17 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   _Vcvv 2601    C_ wss 2973   ~Pcpw 3382    X. cxp 4361   -->wf 4918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926
This theorem is referenced by:  fabex  5098  f1oabexg  5158
  Copyright terms: Public domain W3C validator