ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns Unicode version

Theorem fliftfuns 5458
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftfuns  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Distinct variable groups:    y, z, A   
y, B, z    x, z, y, R    y, F, z    ph, x, y, z   
x, X, y, z   
x, S, y, z
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
2 nfcv 2219 . . . . 5  |-  F/_ y <. A ,  B >.
3 nfcsb1v 2938 . . . . . 6  |-  F/_ x [_ y  /  x ]_ A
4 nfcsb1v 2938 . . . . . 6  |-  F/_ x [_ y  /  x ]_ B
53, 4nfop 3586 . . . . 5  |-  F/_ x <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >.
6 csbeq1a 2916 . . . . . 6  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
7 csbeq1a 2916 . . . . . 6  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
86, 7opeq12d 3578 . . . . 5  |-  ( x  =  y  ->  <. A ,  B >.  =  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
92, 5, 8cbvmpt 3872 . . . 4  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
109rneqi 4580 . . 3  |-  ran  (
x  e.  X  |->  <. A ,  B >. )  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
111, 10eqtri 2101 . 2  |-  F  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
12 flift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
1312ralrimiva 2434 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  R )
143nfel1 2229 . . . 4  |-  F/ x [_ y  /  x ]_ A  e.  R
156eleq1d 2147 . . . 4  |-  ( x  =  y  ->  ( A  e.  R  <->  [_ y  /  x ]_ A  e.  R
) )
1614, 15rspc 2695 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  A  e.  R  ->  [_ y  /  x ]_ A  e.  R )
)
1713, 16mpan9 275 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ A  e.  R )
18 flift.3 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1918ralrimiva 2434 . . 3  |-  ( ph  ->  A. x  e.  X  B  e.  S )
204nfel1 2229 . . . 4  |-  F/ x [_ y  /  x ]_ B  e.  S
217eleq1d 2147 . . . 4  |-  ( x  =  y  ->  ( B  e.  S  <->  [_ y  /  x ]_ B  e.  S
) )
2220, 21rspc 2695 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  B  e.  S  ->  [_ y  /  x ]_ B  e.  S )
)
2319, 22mpan9 275 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ B  e.  S )
24 csbeq1 2911 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
25 csbeq1 2911 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
2611, 17, 23, 24, 25fliftfun 5456 1  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   [_csb 2908   <.cop 3401    |-> cmpt 3839   ran crn 4364   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator