ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqbi Unicode version

Theorem flqbi 9292
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
Assertion
Ref Expression
flqbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )

Proof of Theorem flqbi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qre 8710 . . . 4  |-  ( A  e.  QQ  ->  A  e.  RR )
2 flval 9276 . . . . 5  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
32eqeq1d 2089 . . . 4  |-  ( A  e.  RR  ->  (
( |_ `  A
)  =  B  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
41, 3syl 14 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  B  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
54adantr 270 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  =  B ) )
6 qbtwnz 9260 . . . 4  |-  ( A  e.  QQ  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
7 breq1 3788 . . . . . 6  |-  ( x  =  B  ->  (
x  <_  A  <->  B  <_  A ) )
8 oveq1 5539 . . . . . . 7  |-  ( x  =  B  ->  (
x  +  1 )  =  ( B  + 
1 ) )
98breq2d 3797 . . . . . 6  |-  ( x  =  B  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( B  +  1 ) ) )
107, 9anbi12d 456 . . . . 5  |-  ( x  =  B  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
1110riota2 5510 . . . 4  |-  ( ( B  e.  ZZ  /\  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
126, 11sylan2 280 . . 3  |-  ( ( B  e.  ZZ  /\  A  e.  QQ )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )  =  B ) )
1312ancoms 264 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )  =  B ) )
145, 13bitr4d 189 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E!wreu 2350   class class class wbr 3785   ` cfv 4922   iota_crio 5487  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154   ZZcz 8351   QQcq 8704   |_cfl 9272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274
This theorem is referenced by:  flqbi2  9293  flqaddz  9299  ex-fl  10563
  Copyright terms: Public domain W3C validator