![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-fl | Unicode version |
Description: Example for df-fl 9274. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-fl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7118 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 3re 8113 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | rehalfcli 8279 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 2cn 8110 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
5 | 4 | mulid2i 7122 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2lt3 8202 |
. . . . . 6
![]() ![]() ![]() ![]() | |
7 | 5, 6 | eqbrtri 3804 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2pos 8130 |
. . . . . 6
![]() ![]() ![]() ![]() | |
9 | 2re 8109 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
10 | 1, 2, 9 | ltmuldivi 8000 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | ax-mp 7 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | mpbi 143 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1, 3, 12 | ltleii 7213 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 3lt4 8204 |
. . . . . 6
![]() ![]() ![]() ![]() | |
15 | 2t2e4 8186 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | breqtrri 3810 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 9, 8 | pm3.2i 266 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | ltdivmul 7954 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 2, 9, 17, 18 | mp3an 1268 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 16, 19 | mpbir 144 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | df-2 8098 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 20, 21 | breqtri 3808 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 3z 8380 |
. . . . 5
![]() ![]() ![]() ![]() | |
24 | 2nn 8193 |
. . . . 5
![]() ![]() ![]() ![]() | |
25 | znq 8709 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 23, 24, 25 | mp2an 416 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 1z 8377 |
. . . 4
![]() ![]() ![]() ![]() | |
28 | flqbi 9292 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 26, 27, 28 | mp2an 416 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 13, 22, 29 | mpbir2an 883 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 9 | renegcli 7370 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
32 | 3 | renegcli 7370 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 3, 9 | ltnegi 7594 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 20, 33 | mpbi 143 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 31, 32, 34 | ltleii 7213 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 4 | negcli 7376 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
37 | ax-1cn 7069 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
38 | negdi2 7366 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 36, 37, 38 | mp2an 416 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 4 | negnegi 7378 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
41 | 40 | oveq1i 5542 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 39, 41 | eqtri 2101 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 2m1e1 8156 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
44 | 43, 12 | eqbrtri 3804 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 42, 44 | eqbrtri 3804 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 31, 1 | readdcli 7132 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 46, 3 | ltnegcon1i 7600 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 45, 47 | mpbi 143 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | qnegcl 8721 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
50 | 26, 49 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 2z 8379 |
. . . . 5
![]() ![]() ![]() ![]() | |
52 | znegcl 8382 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
53 | 51, 52 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
54 | flqbi 9292 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | 50, 53, 54 | mp2an 416 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 35, 48, 55 | mpbir2an 883 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | 30, 56 | pm3.2i 266 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-q 8705 df-rp 8735 df-fl 9274 |
This theorem is referenced by: ex-ceil 10564 |
Copyright terms: Public domain | W3C validator |