ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneu Unicode version

Theorem fneu 5023
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Distinct variable groups:    y, F    y, B
Allowed substitution hint:    A( y)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 4937 . . . 4  |-  ( Fun 
F  ->  E* y  B F y )
21adantr 270 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E* y  B F
y )
3 eldmg 4548 . . . . . 6  |-  ( B  e.  dom  F  -> 
( B  e.  dom  F  <->  E. y  B F
y ) )
43ibi 174 . . . . 5  |-  ( B  e.  dom  F  ->  E. y  B F
y )
54adantl 271 . . . 4  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E. y  B F
y )
6 exmoeu2 1989 . . . 4  |-  ( E. y  B F y  ->  ( E* y  B F y  <->  E! y  B F y ) )
75, 6syl 14 . . 3  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( E* y  B F y  <->  E! y  B F y ) )
82, 7mpbid 145 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  E! y  B F
y )
98funfni 5019 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   E.wex 1421    e. wcel 1433   E!weu 1941   E*wmo 1942   class class class wbr 3785   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by:  fneu2  5024  fnbrfvb  5235
  Copyright terms: Public domain W3C validator