ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo Unicode version

Theorem funmo 4937
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo  |-  ( Fun 
F  ->  E* y  A F y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funmo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dffun6 4936 . . . . . 6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
21simplbi 268 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
3 brrelex 4400 . . . . . 6  |-  ( ( Rel  F  /\  A F y )  ->  A  e.  _V )
43ex 113 . . . . 5  |-  ( Rel 
F  ->  ( A F y  ->  A  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( Fun 
F  ->  ( A F y  ->  A  e.  _V ) )
65ancrd 319 . . 3  |-  ( Fun 
F  ->  ( A F y  ->  ( A  e.  _V  /\  A F y ) ) )
76alrimiv 1795 . 2  |-  ( Fun 
F  ->  A. y
( A F y  ->  ( A  e. 
_V  /\  A F
y ) ) )
8 breq1 3788 . . . . . . 7  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
98mobidv 1977 . . . . . 6  |-  ( x  =  A  ->  ( E* y  x F
y  <->  E* y  A F y ) )
109imbi2d 228 . . . . 5  |-  ( x  =  A  ->  (
( Fun  F  ->  E* y  x F y )  <->  ( Fun  F  ->  E* y  A F y ) ) )
111simprbi 269 . . . . . 6  |-  ( Fun 
F  ->  A. x E* y  x F
y )
121119.21bi 1490 . . . . 5  |-  ( Fun 
F  ->  E* y  x F y )
1310, 12vtoclg 2658 . . . 4  |-  ( A  e.  _V  ->  ( Fun  F  ->  E* y  A F y ) )
1413com12 30 . . 3  |-  ( Fun 
F  ->  ( A  e.  _V  ->  E* y  A F y ) )
15 moanimv 2016 . . 3  |-  ( E* y ( A  e. 
_V  /\  A F
y )  <->  ( A  e.  _V  ->  E* y  A F y ) )
1614, 15sylibr 132 . 2  |-  ( Fun 
F  ->  E* y
( A  e.  _V  /\  A F y ) )
17 moim 2005 . 2  |-  ( A. y ( A F y  ->  ( A  e.  _V  /\  A F y ) )  -> 
( E* y ( A  e.  _V  /\  A F y )  ->  E* y  A F
y ) )
187, 16, 17sylc 61 1  |-  ( Fun 
F  ->  E* y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284    e. wcel 1433   E*wmo 1942   _Vcvv 2601   class class class wbr 3785   Rel wrel 4368   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  funeu  4946  funco  4960  imadif  4999  fneu  5023  dff3im  5333  shftfn  9712
  Copyright terms: Public domain W3C validator