| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnofval | Unicode version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 |
|
| offval.2 |
|
| offval.3 |
|
| offval.4 |
|
| offval.5 |
|
| ofval.6 |
|
| ofval.7 |
|
| ofval.8 |
|
| ofval.9 |
|
| ofval.10 |
|
| Ref | Expression |
|---|---|
| fnofval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 |
. . . . 5
| |
| 2 | offval.2 |
. . . . 5
| |
| 3 | offval.3 |
. . . . 5
| |
| 4 | offval.4 |
. . . . 5
| |
| 5 | offval.5 |
. . . . 5
| |
| 6 | eqidd 2082 |
. . . . 5
| |
| 7 | eqidd 2082 |
. . . . 5
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 5739 |
. . . 4
|
| 9 | 8 | fveq1d 5200 |
. . 3
|
| 10 | 9 | adantr 270 |
. 2
|
| 11 | simpr 108 |
. . 3
| |
| 12 | ofval.8 |
. . . . 5
| |
| 13 | 12 | adantr 270 |
. . . 4
|
| 14 | ofval.9 |
. . . . . 6
| |
| 15 | 14 | adantr 270 |
. . . . 5
|
| 16 | inss1 3186 |
. . . . . . . . 9
| |
| 17 | 5, 16 | eqsstr3i 3030 |
. . . . . . . 8
|
| 18 | 17 | sseli 2995 |
. . . . . . 7
|
| 19 | ofval.6 |
. . . . . . 7
| |
| 20 | 18, 19 | sylan2 280 |
. . . . . 6
|
| 21 | 20 | eleq1d 2147 |
. . . . 5
|
| 22 | 15, 21 | mpbird 165 |
. . . 4
|
| 23 | ofval.10 |
. . . . . 6
| |
| 24 | 23 | adantr 270 |
. . . . 5
|
| 25 | inss2 3187 |
. . . . . . . . 9
| |
| 26 | 5, 25 | eqsstr3i 3030 |
. . . . . . . 8
|
| 27 | 26 | sseli 2995 |
. . . . . . 7
|
| 28 | ofval.7 |
. . . . . . 7
| |
| 29 | 27, 28 | sylan2 280 |
. . . . . 6
|
| 30 | 29 | eleq1d 2147 |
. . . . 5
|
| 31 | 24, 30 | mpbird 165 |
. . . 4
|
| 32 | fnovex 5558 |
. . . 4
| |
| 33 | 13, 22, 31, 32 | syl3anc 1169 |
. . 3
|
| 34 | fveq2 5198 |
. . . . 5
| |
| 35 | fveq2 5198 |
. . . . 5
| |
| 36 | 34, 35 | oveq12d 5550 |
. . . 4
|
| 37 | eqid 2081 |
. . . 4
| |
| 38 | 36, 37 | fvmptg 5269 |
. . 3
|
| 39 | 11, 33, 38 | syl2anc 403 |
. 2
|
| 40 | 20, 29 | oveq12d 5550 |
. 2
|
| 41 | 10, 39, 40 | 3eqtrd 2117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-of 5732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |