ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnofval Unicode version

Theorem fnofval 5741
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( ph  ->  R  Fn  ( U  X.  V ) )
ofval.9  |-  ( ph  ->  C  e.  U )
ofval.10  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fnofval  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem fnofval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2082 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2082 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 5739 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5200 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 270 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 simpr 108 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
12 ofval.8 . . . . 5  |-  ( ph  ->  R  Fn  ( U  X.  V ) )
1312adantr 270 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  R  Fn  ( U  X.  V
) )
14 ofval.9 . . . . . 6  |-  ( ph  ->  C  e.  U )
1514adantr 270 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  C  e.  U )
16 inss1 3186 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
175, 16eqsstr3i 3030 . . . . . . . 8  |-  S  C_  A
1817sseli 2995 . . . . . . 7  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . . 7  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 280 . . . . . 6  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
2120eleq1d 2147 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
)  e.  U  <->  C  e.  U ) )
2215, 21mpbird 165 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  e.  U )
23 ofval.10 . . . . . 6  |-  ( ph  ->  D  e.  V )
2423adantr 270 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  D  e.  V )
25 inss2 3187 . . . . . . . . 9  |-  ( A  i^i  B )  C_  B
265, 25eqsstr3i 3030 . . . . . . . 8  |-  S  C_  B
2726sseli 2995 . . . . . . 7  |-  ( X  e.  S  ->  X  e.  B )
28 ofval.7 . . . . . . 7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2927, 28sylan2 280 . . . . . 6  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
3029eleq1d 2147 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  (
( G `  X
)  e.  V  <->  D  e.  V ) )
3124, 30mpbird 165 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  e.  V )
32 fnovex 5558 . . . 4  |-  ( ( R  Fn  ( U  X.  V )  /\  ( F `  X )  e.  U  /\  ( G `  X )  e.  V )  ->  (
( F `  X
) R ( G `
 X ) )  e.  _V )
3313, 22, 31, 32syl3anc 1169 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  _V )
34 fveq2 5198 . . . . 5  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
35 fveq2 5198 . . . . 5  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
3634, 35oveq12d 5550 . . . 4  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
37 eqid 2081 . . . 4  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
3836, 37fvmptg 5269 . . 3  |-  ( ( X  e.  S  /\  ( ( F `  X ) R ( G `  X ) )  e.  _V )  ->  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X )  =  ( ( F `  X
) R ( G `
 X ) ) )
3911, 33, 38syl2anc 403 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
4020, 29oveq12d 5550 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
4110, 39, 403eqtrd 2117 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    i^i cin 2972    |-> cmpt 3839    X. cxp 4361    Fn wfn 4917   ` cfv 4922  (class class class)co 5532    oFcof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator