| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofrfval | Unicode version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 |
|
| offval.2 |
|
| offval.3 |
|
| offval.4 |
|
| offval.5 |
|
| offval.6 |
|
| offval.7 |
|
| Ref | Expression |
|---|---|
| ofrfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 |
. . . 4
| |
| 2 | offval.3 |
. . . 4
| |
| 3 | fnex 5404 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 403 |
. . 3
|
| 5 | offval.2 |
. . . 4
| |
| 6 | offval.4 |
. . . 4
| |
| 7 | fnex 5404 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2anc 403 |
. . 3
|
| 9 | dmeq 4553 |
. . . . . 6
| |
| 10 | dmeq 4553 |
. . . . . 6
| |
| 11 | 9, 10 | ineqan12d 3169 |
. . . . 5
|
| 12 | fveq1 5197 |
. . . . . 6
| |
| 13 | fveq1 5197 |
. . . . . 6
| |
| 14 | 12, 13 | breqan12d 3800 |
. . . . 5
|
| 15 | 11, 14 | raleqbidv 2561 |
. . . 4
|
| 16 | df-ofr 5733 |
. . . 4
| |
| 17 | 15, 16 | brabga 4019 |
. . 3
|
| 18 | 4, 8, 17 | syl2anc 403 |
. 2
|
| 19 | fndm 5018 |
. . . . . 6
| |
| 20 | 1, 19 | syl 14 |
. . . . 5
|
| 21 | fndm 5018 |
. . . . . 6
| |
| 22 | 5, 21 | syl 14 |
. . . . 5
|
| 23 | 20, 22 | ineq12d 3168 |
. . . 4
|
| 24 | offval.5 |
. . . 4
| |
| 25 | 23, 24 | syl6eq 2129 |
. . 3
|
| 26 | 25 | raleqdv 2555 |
. 2
|
| 27 | inss1 3186 |
. . . . . . 7
| |
| 28 | 24, 27 | eqsstr3i 3030 |
. . . . . 6
|
| 29 | 28 | sseli 2995 |
. . . . 5
|
| 30 | offval.6 |
. . . . 5
| |
| 31 | 29, 30 | sylan2 280 |
. . . 4
|
| 32 | inss2 3187 |
. . . . . . 7
| |
| 33 | 24, 32 | eqsstr3i 3030 |
. . . . . 6
|
| 34 | 33 | sseli 2995 |
. . . . 5
|
| 35 | offval.7 |
. . . . 5
| |
| 36 | 34, 35 | sylan2 280 |
. . . 4
|
| 37 | 31, 36 | breq12d 3798 |
. . 3
|
| 38 | 37 | ralbidva 2364 |
. 2
|
| 39 | 18, 26, 38 | 3bitrd 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ofr 5733 |
| This theorem is referenced by: ofrval 5742 ofrfval2 5747 caofref 5752 caofrss 5755 caoftrn 5756 |
| Copyright terms: Public domain | W3C validator |