ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopabg Unicode version

Theorem fnopabg 5042
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fnopabg  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2016 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
21albii 1399 . . . . 5  |-  ( A. x E* y ( x  e.  A  /\  ph ) 
<-> 
A. x ( x  e.  A  ->  E* y ph ) )
3 funopab 4955 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
4 df-ral 2353 . . . . 5  |-  ( A. x  e.  A  E* y ph  <->  A. x ( x  e.  A  ->  E* y ph ) )
52, 3, 43bitr4ri 211 . . . 4  |-  ( A. x  e.  A  E* y ph  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
6 dmopab3 4566 . . . 4  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
75, 6anbi12i 447 . . 3  |-  ( ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph )  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
8 r19.26 2485 . . 3  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph ) )
9 df-fn 4925 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
107, 8, 93bitr4i 210 . 2  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
11 eu5 1988 . . . 4  |-  ( E! y ph  <->  ( E. y ph  /\  E* y ph ) )
12 ancom 262 . . . 4  |-  ( ( E. y ph  /\  E* y ph )  <->  ( E* y ph  /\  E. y ph ) )
1311, 12bitri 182 . . 3  |-  ( E! y ph  <->  ( E* y ph  /\  E. y ph ) )
1413ralbii 2372 . 2  |-  ( A. x  e.  A  E! y ph  <->  A. x  e.  A  ( E* y ph  /\  E. y ph ) )
15 fnopabg.1 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
1615fneq1i 5013 . 2  |-  ( F  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
1710, 14, 163bitr4i 210 1  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   E!weu 1941   E*wmo 1942   A.wral 2348   {copab 3838   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by:  fnopab  5043  mptfng  5044
  Copyright terms: Public domain W3C validator