ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp Unicode version

Theorem fntp 4976
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1  |-  A  e. 
_V
fntp.2  |-  B  e. 
_V
fntp.3  |-  C  e. 
_V
fntp.4  |-  D  e. 
_V
fntp.5  |-  E  e. 
_V
fntp.6  |-  F  e. 
_V
Assertion
Ref Expression
fntp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3  |-  A  e. 
_V
2 fntp.2 . . 3  |-  B  e. 
_V
3 fntp.3 . . 3  |-  C  e. 
_V
4 fntp.4 . . 3  |-  D  e. 
_V
5 fntp.5 . . 3  |-  E  e. 
_V
6 fntp.6 . . 3  |-  F  e. 
_V
71, 2, 3, 4, 5, 6funtp 4972 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
84, 5, 6dmtpop 4816 . . 3  |-  dom  { <. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
98a1i 9 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
)
10 df-fn 4925 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  Fn  { A ,  B ,  C }  <->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  /\  dom  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. }  =  { A ,  B ,  C }
) )
117, 9, 10sylanbrc 408 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   _Vcvv 2601   {ctp 3400   <.cop 3401   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator