ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtp Unicode version

Theorem funtp 4972
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
funtp.1  |-  A  e. 
_V
funtp.2  |-  B  e. 
_V
funtp.3  |-  C  e. 
_V
funtp.4  |-  D  e. 
_V
funtp.5  |-  E  e. 
_V
funtp.6  |-  F  e. 
_V
Assertion
Ref Expression
funtp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )

Proof of Theorem funtp
StepHypRef Expression
1 funtp.1 . . . . . 6  |-  A  e. 
_V
2 funtp.2 . . . . . 6  |-  B  e. 
_V
3 funtp.4 . . . . . 6  |-  D  e. 
_V
4 funtp.5 . . . . . 6  |-  E  e. 
_V
51, 2, 3, 4funpr 4971 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. } )
6 funtp.3 . . . . . 6  |-  C  e. 
_V
7 funtp.6 . . . . . 6  |-  F  e. 
_V
86, 7funsn 4968 . . . . 5  |-  Fun  { <. C ,  F >. }
95, 8jctir 306 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } ) )
103, 4dmprop 4815 . . . . . . 7  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  { A ,  B }
11 df-pr 3405 . . . . . . 7  |-  { A ,  B }  =  ( { A }  u.  { B } )
1210, 11eqtri 2101 . . . . . 6  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  ( { A }  u.  { B } )
137dmsnop 4814 . . . . . 6  |-  dom  { <. C ,  F >. }  =  { C }
1412, 13ineq12i 3165 . . . . 5  |-  ( dom 
{ <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  ( ( { A }  u.  { B } )  i^i 
{ C } )
15 disjsn2 3455 . . . . . . 7  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
16 disjsn2 3455 . . . . . . 7  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
1715, 16anim12i 331 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
18 undisj1 3301 . . . . . 6  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
1917, 18sylib 120 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
2014, 19syl5eq 2125 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  {
<. C ,  F >. } )  =  (/) )
21 funun 4964 . . . 4  |-  ( ( ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } )  /\  ( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  (/) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
229, 20, 21syl2an 283 . . 3  |-  ( ( A  =/=  B  /\  ( A  =/=  C  /\  B  =/=  C
) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
23223impb 1134 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
24 df-tp 3406 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
2524funeqi 4942 . 2  |-  ( Fun 
{ <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  <->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) )
2623, 25sylibr 132 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   _Vcvv 2601    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399   {ctp 3400   <.cop 3401   dom cdm 4363   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924
This theorem is referenced by:  fntp  4976
  Copyright terms: Public domain W3C validator