| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wetriext | Unicode version | ||
| Description: A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| wetriext.we |
|
| wetriext.a |
|
| wetriext.tri |
|
| wetriext.b |
|
| wetriext.c |
|
| wetriext.ext |
|
| Ref | Expression |
|---|---|
| wetriext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wetriext.b |
. . . . 5
| |
| 2 | wetriext.ext |
. . . . 5
| |
| 3 | breq1 3788 |
. . . . . . 7
| |
| 4 | breq1 3788 |
. . . . . . 7
| |
| 5 | 3, 4 | bibi12d 233 |
. . . . . 6
|
| 6 | 5 | rspcv 2697 |
. . . . 5
|
| 7 | 1, 2, 6 | sylc 61 |
. . . 4
|
| 8 | 7 | biimpar 291 |
. . 3
|
| 9 | wetriext.we |
. . . . . 6
| |
| 10 | wefr 4113 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | wetriext.a |
. . . . 5
| |
| 13 | frirrg 4105 |
. . . . 5
| |
| 14 | 11, 12, 1, 13 | syl3anc 1169 |
. . . 4
|
| 15 | 14 | adantr 270 |
. . 3
|
| 16 | 8, 15 | pm2.21dd 582 |
. 2
|
| 17 | simpr 108 |
. 2
| |
| 18 | wetriext.c |
. . . . 5
| |
| 19 | breq1 3788 |
. . . . . . 7
| |
| 20 | breq1 3788 |
. . . . . . 7
| |
| 21 | 19, 20 | bibi12d 233 |
. . . . . 6
|
| 22 | 21 | rspcv 2697 |
. . . . 5
|
| 23 | 18, 2, 22 | sylc 61 |
. . . 4
|
| 24 | 23 | biimpa 290 |
. . 3
|
| 25 | frirrg 4105 |
. . . . 5
| |
| 26 | 11, 12, 18, 25 | syl3anc 1169 |
. . . 4
|
| 27 | 26 | adantr 270 |
. . 3
|
| 28 | 24, 27 | pm2.21dd 582 |
. 2
|
| 29 | wetriext.tri |
. . 3
| |
| 30 | breq1 3788 |
. . . . . 6
| |
| 31 | eqeq1 2087 |
. . . . . 6
| |
| 32 | breq2 3789 |
. . . . . 6
| |
| 33 | 30, 31, 32 | 3orbi123d 1242 |
. . . . 5
|
| 34 | breq2 3789 |
. . . . . 6
| |
| 35 | eqeq2 2090 |
. . . . . 6
| |
| 36 | breq1 3788 |
. . . . . 6
| |
| 37 | 34, 35, 36 | 3orbi123d 1242 |
. . . . 5
|
| 38 | 33, 37 | rspc2v 2713 |
. . . 4
|
| 39 | 1, 18, 38 | syl2anc 403 |
. . 3
|
| 40 | 29, 39 | mpd 13 |
. 2
|
| 41 | 16, 17, 28, 40 | mpjao3dan 1238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-frfor 4086 df-frind 4087 df-wetr 4089 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |