| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funssres | Unicode version | ||
| Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| funssres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . . . . 7
| |
| 2 | vex 2604 |
. . . . . . . . 9
| |
| 3 | vex 2604 |
. . . . . . . . 9
| |
| 4 | 2, 3 | opeldm 4556 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | 1, 5 | jcad 301 |
. . . . . 6
|
| 7 | 6 | adantl 271 |
. . . . 5
|
| 8 | funeu2 4947 |
. . . . . . . . . . . 12
| |
| 9 | 2 | eldm2 4551 |
. . . . . . . . . . . . . 14
|
| 10 | 1 | ancrd 319 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | eximdv 1801 |
. . . . . . . . . . . . . 14
|
| 12 | 9, 11 | syl5bi 150 |
. . . . . . . . . . . . 13
|
| 13 | 12 | imp 122 |
. . . . . . . . . . . 12
|
| 14 | eupick 2020 |
. . . . . . . . . . . 12
| |
| 15 | 8, 13, 14 | syl2an 283 |
. . . . . . . . . . 11
|
| 16 | 15 | exp43 364 |
. . . . . . . . . 10
|
| 17 | 16 | com23 77 |
. . . . . . . . 9
|
| 18 | 17 | imp 122 |
. . . . . . . 8
|
| 19 | 18 | com34 82 |
. . . . . . 7
|
| 20 | 19 | pm2.43d 49 |
. . . . . 6
|
| 21 | 20 | impd 251 |
. . . . 5
|
| 22 | 7, 21 | impbid 127 |
. . . 4
|
| 23 | 3 | opelres 4635 |
. . . 4
|
| 24 | 22, 23 | syl6rbbr 197 |
. . 3
|
| 25 | 24 | alrimivv 1796 |
. 2
|
| 26 | relres 4657 |
. . 3
| |
| 27 | funrel 4939 |
. . . 4
| |
| 28 | relss 4445 |
. . . 4
| |
| 29 | 27, 28 | mpan9 275 |
. . 3
|
| 30 | eqrel 4447 |
. . 3
| |
| 31 | 26, 29, 30 | sylancr 405 |
. 2
|
| 32 | 25, 31 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-res 4375 df-fun 4924 |
| This theorem is referenced by: fun2ssres 4963 funcnvres 4992 funssfv 5220 oprssov 5662 |
| Copyright terms: Public domain | W3C validator |