| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvopab3ig | Unicode version | ||
| Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| fvopab3ig.1 |
|
| fvopab3ig.2 |
|
| fvopab3ig.3 |
|
| fvopab3ig.4 |
|
| Ref | Expression |
|---|---|
| fvopab3ig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. . . . . . . 8
| |
| 2 | fvopab3ig.1 |
. . . . . . . 8
| |
| 3 | 1, 2 | anbi12d 456 |
. . . . . . 7
|
| 4 | fvopab3ig.2 |
. . . . . . . 8
| |
| 5 | 4 | anbi2d 451 |
. . . . . . 7
|
| 6 | 3, 5 | opelopabg 4023 |
. . . . . 6
|
| 7 | 6 | biimpar 291 |
. . . . 5
|
| 8 | 7 | exp43 364 |
. . . 4
|
| 9 | 8 | pm2.43a 50 |
. . 3
|
| 10 | 9 | imp 122 |
. 2
|
| 11 | fvopab3ig.4 |
. . . 4
| |
| 12 | 11 | fveq1i 5199 |
. . 3
|
| 13 | funopab 4955 |
. . . . 5
| |
| 14 | fvopab3ig.3 |
. . . . . 6
| |
| 15 | moanimv 2016 |
. . . . . 6
| |
| 16 | 14, 15 | mpbir 144 |
. . . . 5
|
| 17 | 13, 16 | mpgbir 1382 |
. . . 4
|
| 18 | funopfv 5234 |
. . . 4
| |
| 19 | 17, 18 | ax-mp 7 |
. . 3
|
| 20 | 12, 19 | syl5eq 2125 |
. 2
|
| 21 | 10, 20 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 |
| This theorem is referenced by: fvmptg 5269 fvopab6 5285 ov6g 5658 |
| Copyright terms: Public domain | W3C validator |