ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab3ig GIF version

Theorem fvopab3ig 5267
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3ig.2 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3ig.3 (𝑥𝐶 → ∃*𝑦𝜑)
fvopab3ig.4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3ig ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2141 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3ig.1 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 456 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3ig.2 . . . . . . . 8 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 451 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 4023 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
76biimpar 291 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐶𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
87exp43 364 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))))
98pm2.43a 50 . . 3 (𝐴𝐶 → (𝐵𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})))
109imp 122 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
11 fvopab3ig.4 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
1211fveq1i 5199 . . 3 (𝐹𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴)
13 funopab 4955 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐶𝜑))
14 fvopab3ig.3 . . . . . 6 (𝑥𝐶 → ∃*𝑦𝜑)
15 moanimv 2016 . . . . . 6 (∃*𝑦(𝑥𝐶𝜑) ↔ (𝑥𝐶 → ∃*𝑦𝜑))
1614, 15mpbir 144 . . . . 5 ∃*𝑦(𝑥𝐶𝜑)
1713, 16mpgbir 1382 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
18 funopfv 5234 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵))
1917, 18ax-mp 7 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵)
2012, 19syl5eq 2125 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (𝐹𝐴) = 𝐵)
2110, 20syl6 33 1 ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  ∃*wmo 1942  cop 3401  {copab 3838  Fun wfun 4916  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by:  fvmptg  5269  fvopab6  5285  ov6g  5658
  Copyright terms: Public domain W3C validator