| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version | ||
| Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
| Ref | Expression |
|---|---|
| ov6g.1 |
|
| ov6g.2 |
|
| Ref | Expression |
|---|---|
| ov6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5535 |
. 2
| |
| 2 | eqid 2081 |
. . . . . 6
| |
| 3 | biidd 170 |
. . . . . . 7
| |
| 4 | 3 | copsex2g 4001 |
. . . . . 6
|
| 5 | 2, 4 | mpbiri 166 |
. . . . 5
|
| 6 | 5 | 3adant3 958 |
. . . 4
|
| 7 | 6 | adantr 270 |
. . 3
|
| 8 | eqeq1 2087 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 452 |
. . . . . . 7
|
| 10 | ov6g.1 |
. . . . . . . . . 10
| |
| 11 | 10 | eqeq2d 2092 |
. . . . . . . . 9
|
| 12 | 11 | eqcoms 2084 |
. . . . . . . 8
|
| 13 | 12 | pm5.32i 441 |
. . . . . . 7
|
| 14 | 9, 13 | syl6bb 194 |
. . . . . 6
|
| 15 | 14 | 2exbidv 1789 |
. . . . 5
|
| 16 | eqeq1 2087 |
. . . . . . 7
| |
| 17 | 16 | anbi2d 451 |
. . . . . 6
|
| 18 | 17 | 2exbidv 1789 |
. . . . 5
|
| 19 | moeq 2767 |
. . . . . . 7
| |
| 20 | 19 | mosubop 4424 |
. . . . . 6
|
| 21 | 20 | a1i 9 |
. . . . 5
|
| 22 | ov6g.2 |
. . . . . 6
| |
| 23 | dfoprab2 5572 |
. . . . . 6
| |
| 24 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 25 | 24 | anbi1d 452 |
. . . . . . . . . . 11
|
| 26 | 25 | pm5.32i 441 |
. . . . . . . . . 10
|
| 27 | an12 525 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | bitr3i 184 |
. . . . . . . . 9
|
| 29 | 28 | 2exbii 1537 |
. . . . . . . 8
|
| 30 | 19.42vv 1829 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitri 182 |
. . . . . . 7
|
| 32 | 31 | opabbii 3845 |
. . . . . 6
|
| 33 | 22, 23, 32 | 3eqtri 2105 |
. . . . 5
|
| 34 | 15, 18, 21, 33 | fvopab3ig 5267 |
. . . 4
|
| 35 | 34 | 3ad2antl3 1102 |
. . 3
|
| 36 | 7, 35 | mpd 13 |
. 2
|
| 37 | 1, 36 | syl5eq 2125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |