ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov6g Unicode version

Theorem ov6g 5658
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
ov6g.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
Assertion
Ref Expression
ov6g  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    z, R    x, S, y, z
Allowed substitution hints:    R( x, y)    F( x, y, z)    G( x, y, z)    H( x, y, z)    J( x, y, z)

Proof of Theorem ov6g
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-ov 5535 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eqid 2081 . . . . . 6  |-  S  =  S
3 biidd 170 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( S  =  S  <-> 
S  =  S ) )
43copsex2g 4001 . . . . . 6  |-  ( ( A  e.  G  /\  B  e.  H )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  <->  S  =  S ) )
52, 4mpbiri 166 . . . . 5  |-  ( ( A  e.  G  /\  B  e.  H )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
653adant3 958 . . . 4  |-  ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  ->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) )
76adantr 270 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
8 eqeq1 2087 . . . . . . . 8  |-  ( w  =  <. A ,  B >.  ->  ( w  = 
<. x ,  y >.  <->  <. A ,  B >.  = 
<. x ,  y >.
) )
98anbi1d 452 . . . . . . 7  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  R ) ) )
10 ov6g.1 . . . . . . . . . 10  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
1110eqeq2d 2092 . . . . . . . . 9  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( z  =  R  <->  z  =  S ) )
1211eqcoms 2084 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( z  =  R  <-> 
z  =  S ) )
1312pm5.32i 441 . . . . . . 7  |-  ( (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  R
)  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) )
149, 13syl6bb 194 . . . . . 6  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) ) )
15142exbidv 1789 . . . . 5  |-  ( w  =  <. A ,  B >.  ->  ( E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S ) ) )
16 eqeq1 2087 . . . . . . 7  |-  ( z  =  S  ->  (
z  =  S  <->  S  =  S ) )
1716anbi2d 451 . . . . . 6  |-  ( z  =  S  ->  (
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) ) )
18172exbidv 1789 . . . . 5  |-  ( z  =  S  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  S
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) ) )
19 moeq 2767 . . . . . . 7  |-  E* z 
z  =  R
2019mosubop 4424 . . . . . 6  |-  E* z E. x E. y ( w  =  <. x ,  y >.  /\  z  =  R )
2120a1i 9 . . . . 5  |-  ( w  e.  C  ->  E* z E. x E. y
( w  =  <. x ,  y >.  /\  z  =  R ) )
22 ov6g.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
23 dfoprab2 5572 . . . . . 6  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  C  /\  z  =  R ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) }
24 eleq1 2141 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  C  <->  <. x ,  y
>.  e.  C ) )
2524anbi1d 452 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  C  /\  z  =  R )  <->  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) )
2625pm5.32i 441 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) )
27 an12 525 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
2826, 27bitr3i 184 . . . . . . . . 9  |-  ( ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  (
w  =  <. x ,  y >.  /\  z  =  R ) ) )
29282exbii 1537 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
30 19.42vv 1829 . . . . . . . 8  |-  ( E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y >.  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3129, 30bitri 182 . . . . . . 7  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3231opabbii 3845 . . . . . 6  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) }  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3322, 23, 323eqtri 2105 . . . . 5  |-  F  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3415, 18, 21, 33fvopab3ig 5267 . . . 4  |-  ( (
<. A ,  B >.  e.  C  /\  S  e.  J )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  S  =  S
)  ->  ( F `  <. A ,  B >. )  =  S ) )
35343ad2antl3 1102 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  ->  ( F `  <. A ,  B >. )  =  S ) )
367, 35mpd 13 . 2  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( F `  <. A ,  B >. )  =  S )
371, 36syl5eq 2125 1  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   E*wmo 1942   <.cop 3401   {copab 3838   ` cfv 4922  (class class class)co 5532   {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator