ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfig Unicode version

Theorem fzfig 9422
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
fzfig  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )

Proof of Theorem fzfig
StepHypRef Expression
1 eluz 8632 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
2 eqid 2081 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
32frechashgf1o 9421 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) : om -1-1-onto-> NN0
4 peano2uz 8671 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
5 uznn0sub 8650 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
64, 5syl 14 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
7 f1ocnvdm 5441 . . . . . 6  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> NN0  /\  ( ( N  + 
1 )  -  M
)  e.  NN0 )  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
om )
83, 6, 7sylancr 405 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om )
9 nnfi 6357 . . . . 5  |-  ( ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  om  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
108, 9syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) )  e.  Fin )
112frecfzen2 9420 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )
12 enfii 6359 . . . 4  |-  ( ( ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 ( ( N  +  1 )  -  M ) )  e. 
Fin  /\  ( M ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  (
( N  +  1 )  -  M ) ) )  ->  ( M ... N )  e. 
Fin )
1310, 11, 12syl2anc 403 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  e.  Fin )
141, 13syl6bir 162 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  ( M ... N
)  e.  Fin )
)
15 zltnle 8397 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1615ancoms 264 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
17 fzn 9061 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
1816, 17bitr3d 188 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N 
<->  ( M ... N
)  =  (/) ) )
19 0fin 6368 . . . 4  |-  (/)  e.  Fin
20 eleq1 2141 . . . 4  |-  ( ( M ... N )  =  (/)  ->  ( ( M ... N )  e.  Fin  <->  (/)  e.  Fin ) )
2119, 20mpbiri 166 . . 3  |-  ( ( M ... N )  =  (/)  ->  ( M ... N )  e. 
Fin )
2218, 21syl6bi 161 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N  ->  ( M ... N )  e.  Fin ) )
23 zdcle 8424 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
24 df-dc 776 . . 3  |-  (DECID  M  <_  N 
<->  ( M  <_  N  \/  -.  M  <_  N
) )
2523, 24sylib 120 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  -.  M  <_  N
) )
2614, 22, 25mpjaod 670 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433   (/)c0 3251   class class class wbr 3785    |-> cmpt 3839   omcom 4331   `'ccnv 4362   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532  freccfrec 6000    ~~ cen 6242   Fincfn 6244   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   NN0cn0 8288   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-er 6129  df-en 6245  df-fin 6247  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fzfigd  9423  fzofig  9424
  Copyright terms: Public domain W3C validator