| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccshftl | Unicode version | ||
| Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iccshftl.1 |
|
| iccshftl.2 |
|
| Ref | Expression |
|---|---|
| iccshftl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . 5
| |
| 2 | resubcl 7372 |
. . . . 5
| |
| 3 | 1, 2 | 2thd 173 |
. . . 4
|
| 4 | 3 | adantl 271 |
. . 3
|
| 5 | lesub1 7560 |
. . . . . 6
| |
| 6 | 5 | 3expb 1139 |
. . . . 5
|
| 7 | 6 | adantlr 460 |
. . . 4
|
| 8 | iccshftl.1 |
. . . . 5
| |
| 9 | 8 | breq1i 3792 |
. . . 4
|
| 10 | 7, 9 | syl6bb 194 |
. . 3
|
| 11 | lesub1 7560 |
. . . . . . 7
| |
| 12 | 11 | 3expb 1139 |
. . . . . 6
|
| 13 | 12 | an12s 529 |
. . . . 5
|
| 14 | 13 | adantll 459 |
. . . 4
|
| 15 | iccshftl.2 |
. . . . 5
| |
| 16 | 15 | breq2i 3793 |
. . . 4
|
| 17 | 14, 16 | syl6bb 194 |
. . 3
|
| 18 | 4, 10, 17 | 3anbi123d 1243 |
. 2
|
| 19 | elicc2 8961 |
. . 3
| |
| 20 | 19 | adantr 270 |
. 2
|
| 21 | resubcl 7372 |
. . . . . 6
| |
| 22 | 8, 21 | syl5eqelr 2166 |
. . . . 5
|
| 23 | resubcl 7372 |
. . . . . 6
| |
| 24 | 15, 23 | syl5eqelr 2166 |
. . . . 5
|
| 25 | elicc2 8961 |
. . . . 5
| |
| 26 | 22, 24, 25 | syl2an 283 |
. . . 4
|
| 27 | 26 | anandirs 557 |
. . 3
|
| 28 | 27 | adantrl 461 |
. 2
|
| 29 | 18, 20, 28 | 3bitr4d 218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-icc 8918 |
| This theorem is referenced by: iccshftli 9019 iccf1o 9026 |
| Copyright terms: Public domain | W3C validator |