| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
|
| Ref | Expression |
|---|---|
| iccf1o.1 |
|
| Ref | Expression |
|---|---|
| iccf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 |
. 2
| |
| 2 | 0re 7119 |
. . . . . . . . 9
| |
| 3 | 1re 7118 |
. . . . . . . . 9
| |
| 4 | 2, 3 | elicc2i 8962 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 953 |
. . . . . . 7
|
| 6 | 5 | adantl 271 |
. . . . . 6
|
| 7 | 6 | recnd 7147 |
. . . . 5
|
| 8 | simpl2 942 |
. . . . . 6
| |
| 9 | 8 | recnd 7147 |
. . . . 5
|
| 10 | 7, 9 | mulcld 7139 |
. . . 4
|
| 11 | ax-1cn 7069 |
. . . . . 6
| |
| 12 | subcl 7307 |
. . . . . 6
| |
| 13 | 11, 7, 12 | sylancr 405 |
. . . . 5
|
| 14 | simpl1 941 |
. . . . . 6
| |
| 15 | 14 | recnd 7147 |
. . . . 5
|
| 16 | 13, 15 | mulcld 7139 |
. . . 4
|
| 17 | 10, 16 | addcomd 7259 |
. . 3
|
| 18 | lincmb01cmp 9025 |
. . 3
| |
| 19 | 17, 18 | eqeltrd 2155 |
. 2
|
| 20 | simpr 108 |
. . . . 5
| |
| 21 | simpl1 941 |
. . . . . 6
| |
| 22 | simpl2 942 |
. . . . . 6
| |
| 23 | elicc2 8961 |
. . . . . . . . 9
| |
| 24 | 23 | 3adant3 958 |
. . . . . . . 8
|
| 25 | 24 | biimpa 290 |
. . . . . . 7
|
| 26 | 25 | simp1d 950 |
. . . . . 6
|
| 27 | eqid 2081 |
. . . . . . 7
| |
| 28 | eqid 2081 |
. . . . . . 7
| |
| 29 | 27, 28 | iccshftl 9018 |
. . . . . 6
|
| 30 | 21, 22, 26, 21, 29 | syl22anc 1170 |
. . . . 5
|
| 31 | 20, 30 | mpbid 145 |
. . . 4
|
| 32 | 26, 21 | resubcld 7485 |
. . . . . 6
|
| 33 | 32 | recnd 7147 |
. . . . 5
|
| 34 | difrp 8770 |
. . . . . . . 8
| |
| 35 | 34 | biimp3a 1276 |
. . . . . . 7
|
| 36 | 35 | adantr 270 |
. . . . . 6
|
| 37 | 36 | rpcnd 8775 |
. . . . 5
|
| 38 | rpap0 8750 |
. . . . . 6
| |
| 39 | 36, 38 | syl 14 |
. . . . 5
|
| 40 | 33, 37, 39 | divcanap1d 7878 |
. . . 4
|
| 41 | 37 | mul02d 7496 |
. . . . . 6
|
| 42 | 21 | recnd 7147 |
. . . . . . 7
|
| 43 | 42 | subidd 7407 |
. . . . . 6
|
| 44 | 41, 43 | eqtr4d 2116 |
. . . . 5
|
| 45 | 37 | mulid2d 7137 |
. . . . 5
|
| 46 | 44, 45 | oveq12d 5550 |
. . . 4
|
| 47 | 31, 40, 46 | 3eltr4d 2162 |
. . 3
|
| 48 | 0red 7120 |
. . . 4
| |
| 49 | 1red 7134 |
. . . 4
| |
| 50 | 32, 36 | rerpdivcld 8805 |
. . . 4
|
| 51 | eqid 2081 |
. . . . 5
| |
| 52 | eqid 2081 |
. . . . 5
| |
| 53 | 51, 52 | iccdil 9020 |
. . . 4
|
| 54 | 48, 49, 50, 36, 53 | syl22anc 1170 |
. . 3
|
| 55 | 47, 54 | mpbird 165 |
. 2
|
| 56 | eqcom 2083 |
. . . 4
| |
| 57 | 33 | adantrl 461 |
. . . . 5
|
| 58 | 7 | adantrr 462 |
. . . . 5
|
| 59 | 37 | adantrl 461 |
. . . . 5
|
| 60 | 39 | adantrl 461 |
. . . . 5
|
| 61 | 57, 58, 59, 60 | divmulap3d 7911 |
. . . 4
|
| 62 | 56, 61 | syl5bb 190 |
. . 3
|
| 63 | 26 | adantrl 461 |
. . . . . 6
|
| 64 | 63 | recnd 7147 |
. . . . 5
|
| 65 | 42 | adantrl 461 |
. . . . 5
|
| 66 | 8, 14 | resubcld 7485 |
. . . . . . . 8
|
| 67 | 6, 66 | remulcld 7149 |
. . . . . . 7
|
| 68 | 67 | adantrr 462 |
. . . . . 6
|
| 69 | 68 | recnd 7147 |
. . . . 5
|
| 70 | 64, 65, 69 | subadd2d 7438 |
. . . 4
|
| 71 | eqcom 2083 |
. . . 4
| |
| 72 | 70, 71 | syl6bb 194 |
. . 3
|
| 73 | 7, 15 | mulcld 7139 |
. . . . . . 7
|
| 74 | 10, 73, 15 | subadd23d 7441 |
. . . . . 6
|
| 75 | 7, 9, 15 | subdid 7518 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5547 |
. . . . . 6
|
| 77 | 1cnd 7135 |
. . . . . . . . 9
| |
| 78 | 77, 7, 15 | subdird 7519 |
. . . . . . . 8
|
| 79 | 15 | mulid2d 7137 |
. . . . . . . . 9
|
| 80 | 79 | oveq1d 5547 |
. . . . . . . 8
|
| 81 | 78, 80 | eqtrd 2113 |
. . . . . . 7
|
| 82 | 81 | oveq2d 5548 |
. . . . . 6
|
| 83 | 74, 76, 82 | 3eqtr4d 2123 |
. . . . 5
|
| 84 | 83 | adantrr 462 |
. . . 4
|
| 85 | 84 | eqeq2d 2092 |
. . 3
|
| 86 | 62, 72, 85 | 3bitrd 212 |
. 2
|
| 87 | 1, 19, 55, 86 | f1ocnv2d 5724 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-rp 8735 df-icc 8918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |