ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftr Unicode version

Theorem iccshftr 9016
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1  |-  ( A  +  R )  =  C
iccshftr.2  |-  ( B  +  R )  =  D
Assertion
Ref Expression
iccshftr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 107 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 readdcl 7099 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  +  R
)  e.  RR )
31, 22thd 173 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
43adantl 271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
5 leadd1 7534 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
653expb 1139 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
76adantlr 460 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R ) ) )
8 iccshftr.1 . . . . 5  |-  ( A  +  R )  =  C
98breq1i 3792 . . . 4  |-  ( ( A  +  R )  <_  ( X  +  R )  <->  C  <_  ( X  +  R ) )
107, 9syl6bb 194 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  +  R ) ) )
11 leadd1 7534 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
12113expb 1139 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1312an12s 529 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1413adantll 459 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R ) ) )
15 iccshftr.2 . . . . 5  |-  ( B  +  R )  =  D
1615breq2i 3793 . . . 4  |-  ( ( X  +  R )  <_  ( B  +  R )  <->  ( X  +  R )  <_  D
)
1714, 16syl6bb 194 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  D ) )
184, 10, 173anbi123d 1243 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
19 elicc2 8961 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 270 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 readdcl 7099 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  +  R
)  e.  RR )
228, 21syl5eqelr 2166 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 readdcl 7099 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  +  R
)  e.  RR )
2415, 23syl5eqelr 2166 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 8961 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2622, 24, 25syl2an 283 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2726anandirs 557 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
2827adantrl 461 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2918, 20, 283bitr4d 218 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980    + caddc 6984    <_ cle 7154   [,]cicc 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-icc 8918
This theorem is referenced by:  iccshftri  9017  lincmb01cmp  9025
  Copyright terms: Public domain W3C validator