ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccsupr Unicode version

Theorem iccsupr 8989
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Distinct variable groups:    y, A    x, B, y    x, S, y
Allowed substitution hints:    A( x)    C( x, y)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 8978 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2 sstr 3007 . . . . 5  |-  ( ( S  C_  ( A [,] B )  /\  ( A [,] B )  C_  RR )  ->  S  C_  RR )
32ancoms 264 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  S  C_  ( A [,] B
) )  ->  S  C_  RR )
41, 3sylan 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  S  C_  RR )
543adant3 958 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  C_  RR )
6 ne0i 3257 . . 3  |-  ( C  e.  S  ->  S  =/=  (/) )
763ad2ant3 961 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  =/=  (/) )
8 simplr 496 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  B  e.  RR )
9 ssel 2993 . . . . . . . 8  |-  ( S 
C_  ( A [,] B )  ->  (
y  e.  S  -> 
y  e.  ( A [,] B ) ) )
10 elicc2 8961 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
1110biimpd 142 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
129, 11sylan9r 402 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  ( y  e.  S  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
1312imp 122 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
1413simp3d 952 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  y  <_  B )
1514ralrimiva 2434 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  A. y  e.  S  y  <_  B )
16 breq2 3789 . . . . . 6  |-  ( x  =  B  ->  (
y  <_  x  <->  y  <_  B ) )
1716ralbidv 2368 . . . . 5  |-  ( x  =  B  ->  ( A. y  e.  S  y  <_  x  <->  A. y  e.  S  y  <_  B ) )
1817rspcev 2701 . . . 4  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
198, 15, 18syl2anc 403 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
20193adant3 958 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
215, 7, 203jca 1118 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   E.wrex 2349    C_ wss 2973   (/)c0 3251   class class class wbr 3785  (class class class)co 5532   RRcr 6980    <_ cle 7154   [,]cicc 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-icc 8918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator