![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnan | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
intnan.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
intnan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 |
. 2
![]() ![]() ![]() | |
2 | simpr 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mto 620 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-in1 576 ax-in2 577 |
This theorem is referenced by: bianfi 888 axnul 3903 xrltnr 8855 nltmnf 8863 3lcm2e6woprm 10468 6lcm4e12 10469 |
Copyright terms: Public domain | W3C validator |