| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6lcm4e12 | Unicode version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 8121 |
. . . 4
| |
| 2 | 4cn 8117 |
. . . 4
| |
| 3 | 1, 2 | mulcli 7124 |
. . 3
|
| 4 | 6nn0 8309 |
. . . . 5
| |
| 5 | 4 | nn0zi 8373 |
. . . 4
|
| 6 | 4z 8381 |
. . . 4
| |
| 7 | lcmcl 10454 |
. . . . 5
| |
| 8 | 7 | nn0cnd 8343 |
. . . 4
|
| 9 | 5, 6, 8 | mp2an 416 |
. . 3
|
| 10 | gcdcl 10358 |
. . . . . 6
| |
| 11 | 10 | nn0cnd 8343 |
. . . . 5
|
| 12 | 5, 6, 11 | mp2an 416 |
. . . 4
|
| 13 | 5, 6 | pm3.2i 266 |
. . . . . . 7
|
| 14 | 4ne0 8137 |
. . . . . . . . 9
| |
| 15 | 14 | neii 2247 |
. . . . . . . 8
|
| 16 | 15 | intnan 871 |
. . . . . . 7
|
| 17 | gcdn0cl 10354 |
. . . . . . 7
| |
| 18 | 13, 16, 17 | mp2an 416 |
. . . . . 6
|
| 19 | 18 | nnne0i 8070 |
. . . . 5
|
| 20 | 18 | nnzi 8372 |
. . . . . 6
|
| 21 | 0z 8362 |
. . . . . 6
| |
| 22 | zapne 8422 |
. . . . . 6
| |
| 23 | 20, 21, 22 | mp2an 416 |
. . . . 5
|
| 24 | 19, 23 | mpbir 144 |
. . . 4
|
| 25 | 12, 24 | pm3.2i 266 |
. . 3
|
| 26 | 6nn 8197 |
. . . . . . . 8
| |
| 27 | 4nn 8195 |
. . . . . . . 8
| |
| 28 | 26, 27 | pm3.2i 266 |
. . . . . . 7
|
| 29 | lcmgcdnn 10464 |
. . . . . . 7
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . 6
|
| 31 | 30 | eqcomd 2086 |
. . . . 5
|
| 32 | divmulap3 7765 |
. . . . 5
| |
| 33 | 31, 32 | mpbird 165 |
. . . 4
|
| 34 | 33 | eqcomd 2086 |
. . 3
|
| 35 | 3, 9, 25, 34 | mp3an 1268 |
. 2
|
| 36 | 6gcd4e2 10384 |
. . 3
| |
| 37 | 36 | oveq2i 5543 |
. 2
|
| 38 | 2cn 8110 |
. . . 4
| |
| 39 | 2ap0 8132 |
. . . 4
| |
| 40 | 1, 2, 38, 39 | divassapi 7856 |
. . 3
|
| 41 | 4d2e2 8192 |
. . . 4
| |
| 42 | 41 | oveq2i 5543 |
. . 3
|
| 43 | 6t2e12 8580 |
. . 3
| |
| 44 | 40, 42, 43 | 3eqtri 2105 |
. 2
|
| 45 | 35, 37, 44 | 3eqtri 2105 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-inf 6398 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-7 8103 df-8 8104 df-9 8105 df-n0 8289 df-z 8352 df-dec 8478 df-uz 8620 df-q 8705 df-rp 8735 df-fz 9030 df-fzo 9153 df-fl 9274 df-mod 9325 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-gcd 10339 df-lcm 10443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |