ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm Unicode version

Theorem 3lcm2e6woprm 10468
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm  |-  ( 3 lcm  2 )  =  6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 8114 . . . 4  |-  3  e.  CC
2 2cn 8110 . . . 4  |-  2  e.  CC
31, 2mulcli 7124 . . 3  |-  ( 3  x.  2 )  e.  CC
4 3z 8380 . . . 4  |-  3  e.  ZZ
5 2z 8379 . . . 4  |-  2  e.  ZZ
6 lcmcl 10454 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  NN0 )
76nn0cnd 8343 . . . 4  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3 lcm  2 )  e.  CC )
84, 5, 7mp2an 416 . . 3  |-  ( 3 lcm  2 )  e.  CC
94, 5pm3.2i 266 . . . . 5  |-  ( 3  e.  ZZ  /\  2  e.  ZZ )
10 2ne0 8131 . . . . . . 7  |-  2  =/=  0
1110neii 2247 . . . . . 6  |-  -.  2  =  0
1211intnan 871 . . . . 5  |-  -.  (
3  =  0  /\  2  =  0 )
13 gcdn0cl 10354 . . . . . 6  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  NN )
1413nncnd 8053 . . . . 5  |-  ( ( ( 3  e.  ZZ  /\  2  e.  ZZ )  /\  -.  ( 3  =  0  /\  2  =  0 ) )  ->  ( 3  gcd  2 )  e.  CC )
159, 12, 14mp2an 416 . . . 4  |-  ( 3  gcd  2 )  e.  CC
169, 12, 13mp2an 416 . . . . . 6  |-  ( 3  gcd  2 )  e.  NN
1716nnne0i 8070 . . . . 5  |-  ( 3  gcd  2 )  =/=  0
1816nnzi 8372 . . . . . 6  |-  ( 3  gcd  2 )  e.  ZZ
19 0z 8362 . . . . . 6  |-  0  e.  ZZ
20 zapne 8422 . . . . . 6  |-  ( ( ( 3  gcd  2
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( 3  gcd  2 ) #  0  <->  (
3  gcd  2 )  =/=  0 ) )
2118, 19, 20mp2an 416 . . . . 5  |-  ( ( 3  gcd  2 ) #  0  <->  ( 3  gcd  2 )  =/=  0
)
2217, 21mpbir 144 . . . 4  |-  ( 3  gcd  2 ) #  0
2315, 22pm3.2i 266 . . 3  |-  ( ( 3  gcd  2 )  e.  CC  /\  (
3  gcd  2 ) #  0 )
24 3nn 8194 . . . . . . 7  |-  3  e.  NN
25 2nn 8193 . . . . . . 7  |-  2  e.  NN
2624, 25pm3.2i 266 . . . . . 6  |-  ( 3  e.  NN  /\  2  e.  NN )
27 lcmgcdnn 10464 . . . . . . 7  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) )  =  ( 3  x.  2 ) )
2827eqcomd 2086 . . . . . 6  |-  ( ( 3  e.  NN  /\  2  e.  NN )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) )
2926, 28mp1i 10 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2 ) ) )
30 divmulap3 7765 . . . . 5  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( 3 lcm  2 )  <-> 
( 3  x.  2 )  =  ( ( 3 lcm  2 )  x.  ( 3  gcd  2
) ) ) )
3129, 30mpbird 165 . . . 4  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( ( 3  x.  2 )  / 
( 3  gcd  2
) )  =  ( 3 lcm  2 ) )
3231eqcomd 2086 . . 3  |-  ( ( ( 3  x.  2 )  e.  CC  /\  ( 3 lcm  2 )  e.  CC  /\  (
( 3  gcd  2
)  e.  CC  /\  ( 3  gcd  2
) #  0 ) )  ->  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) ) )
333, 8, 23, 32mp3an 1268 . 2  |-  ( 3 lcm  2 )  =  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )
34 gcdcom 10365 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ )  ->  ( 3  gcd  2
)  =  ( 2  gcd  3 ) )
354, 5, 34mp2an 416 . . . 4  |-  ( 3  gcd  2 )  =  ( 2  gcd  3
)
36 1z 8377 . . . . . . . . 9  |-  1  e.  ZZ
37 gcdid 10377 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  gcd  1 )  =  ( abs `  1
) )
3836, 37ax-mp 7 . . . . . . . 8  |-  ( 1  gcd  1 )  =  ( abs `  1
)
39 abs1 9958 . . . . . . . 8  |-  ( abs `  1 )  =  1
4038, 39eqtr2i 2102 . . . . . . 7  |-  1  =  ( 1  gcd  1 )
41 gcdadd 10376 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  gcd  1
)  =  ( 1  gcd  ( 1  +  1 ) ) )
4236, 36, 41mp2an 416 . . . . . . 7  |-  ( 1  gcd  1 )  =  ( 1  gcd  (
1  +  1 ) )
43 1p1e2 8155 . . . . . . . 8  |-  ( 1  +  1 )  =  2
4443oveq2i 5543 . . . . . . 7  |-  ( 1  gcd  ( 1  +  1 ) )  =  ( 1  gcd  2
)
4540, 42, 443eqtri 2105 . . . . . 6  |-  1  =  ( 1  gcd  2 )
46 gcdcom 10365 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 1  gcd  2
)  =  ( 2  gcd  1 ) )
4736, 5, 46mp2an 416 . . . . . 6  |-  ( 1  gcd  2 )  =  ( 2  gcd  1
)
48 gcdadd 10376 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 2  gcd  1
)  =  ( 2  gcd  ( 1  +  2 ) ) )
495, 36, 48mp2an 416 . . . . . 6  |-  ( 2  gcd  1 )  =  ( 2  gcd  (
1  +  2 ) )
5045, 47, 493eqtri 2105 . . . . 5  |-  1  =  ( 2  gcd  ( 1  +  2 ) )
51 1p2e3 8166 . . . . . 6  |-  ( 1  +  2 )  =  3
5251oveq2i 5543 . . . . 5  |-  ( 2  gcd  ( 1  +  2 ) )  =  ( 2  gcd  3
)
5350, 52eqtr2i 2102 . . . 4  |-  ( 2  gcd  3 )  =  1
5435, 53eqtri 2101 . . 3  |-  ( 3  gcd  2 )  =  1
5554oveq2i 5543 . 2  |-  ( ( 3  x.  2 )  /  ( 3  gcd  2 ) )  =  ( ( 3  x.  2 )  /  1
)
56 3t2e6 8188 . . . 4  |-  ( 3  x.  2 )  =  6
5756oveq1i 5542 . . 3  |-  ( ( 3  x.  2 )  /  1 )  =  ( 6  /  1
)
58 6cn 8121 . . . 4  |-  6  e.  CC
5958div1i 7828 . . 3  |-  ( 6  /  1 )  =  6
6057, 59eqtri 2101 . 2  |-  ( ( 3  x.  2 )  /  1 )  =  6
6133, 55, 603eqtri 2105 1  |-  ( 3 lcm  2 )  =  6
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   # cap 7681    / cdiv 7760   NNcn 8039   2c2 8089   3c3 8090   6c6 8093   ZZcz 8351   abscabs 9883    gcd cgcd 10338   lcm clcm 10442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-lcm 10443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator