| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanr | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 |
|
| Ref | Expression |
|---|---|
| intnanr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 |
. 2
| |
| 2 | simpl 107 |
. 2
| |
| 3 | 1, 2 | mto 620 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-in1 576 ax-in2 577 |
| This theorem is referenced by: rab0 3273 co02 4854 frec0g 6006 xrltnr 8855 pnfnlt 8862 nltmnf 8863 |
| Copyright terms: Public domain | W3C validator |