ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co02 Unicode version

Theorem co02 4854
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02  |-  ( A  o.  (/) )  =  (/)

Proof of Theorem co02
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 4839 . 2  |-  Rel  ( A  o.  (/) )
2 rel0 4480 . 2  |-  Rel  (/)
3 noel 3255 . . . . . . 7  |-  -.  <. x ,  z >.  e.  (/)
4 df-br 3786 . . . . . . 7  |-  ( x
(/) z  <->  <. x ,  z >.  e.  (/) )
53, 4mtbir 628 . . . . . 6  |-  -.  x (/) z
65intnanr 872 . . . . 5  |-  -.  (
x (/) z  /\  z A y )
76nex 1429 . . . 4  |-  -.  E. z ( x (/) z  /\  z A y )
8 vex 2604 . . . . 5  |-  x  e. 
_V
9 vex 2604 . . . . 5  |-  y  e. 
_V
108, 9opelco 4525 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  E. z
( x (/) z  /\  z A y ) )
117, 10mtbir 628 . . 3  |-  -.  <. x ,  y >.  e.  ( A  o.  (/) )
12 noel 3255 . . 3  |-  -.  <. x ,  y >.  e.  (/)
1311, 122false 649 . 2  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  <. x ,  y >.  e.  (/) )
141, 2, 13eqrelriiv 4452 1  |-  ( A  o.  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   (/)c0 3251   <.cop 3401   class class class wbr 3785    o. ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-co 4372
This theorem is referenced by:  co01  4855
  Copyright terms: Public domain W3C validator