ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inxp Unicode version

Theorem inxp 4488
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )

Proof of Theorem inxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 4486 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }
2 an4 550 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
3 elin 3155 . . . . . 6  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3155 . . . . . 6  |-  ( y  e.  ( B  i^i  D )  <->  ( y  e.  B  /\  y  e.  D ) )
53, 4anbi12i 447 . . . . 5  |-  ( ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
62, 5bitr4i 185 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) )
76opabbii 3845 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
81, 7eqtri 2101 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
9 df-xp 4369 . . 3  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
10 df-xp 4369 . . 3  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
119, 10ineq12i 3165 . 2  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )
12 df-xp 4369 . 2  |-  ( ( A  i^i  C )  X.  ( B  i^i  D ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) }
138, 11, 123eqtr4i 2111 1  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433    i^i cin 2972   {copab 3838    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370
This theorem is referenced by:  xpindi  4489  xpindir  4490  dmxpinm  4574  xpssres  4663  xpdisj1  4767  xpdisj2  4768  imainrect  4786  xpima1  4787  xpima2m  4788
  Copyright terms: Public domain W3C validator