| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inxp | Unicode version | ||
| Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| inxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopab 4486 |
. . 3
| |
| 2 | an4 550 |
. . . . 5
| |
| 3 | elin 3155 |
. . . . . 6
| |
| 4 | elin 3155 |
. . . . . 6
| |
| 5 | 3, 4 | anbi12i 447 |
. . . . 5
|
| 6 | 2, 5 | bitr4i 185 |
. . . 4
|
| 7 | 6 | opabbii 3845 |
. . 3
|
| 8 | 1, 7 | eqtri 2101 |
. 2
|
| 9 | df-xp 4369 |
. . 3
| |
| 10 | df-xp 4369 |
. . 3
| |
| 11 | 9, 10 | ineq12i 3165 |
. 2
|
| 12 | df-xp 4369 |
. 2
| |
| 13 | 8, 11, 12 | 3eqtr4i 2111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 df-rel 4370 |
| This theorem is referenced by: xpindi 4489 xpindir 4490 dmxpinm 4574 xpssres 4663 xpdisj1 4767 xpdisj2 4768 imainrect 4786 xpima1 4787 xpima2m 4788 |
| Copyright terms: Public domain | W3C validator |