| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2df | Unicode version | ||
| Description: A condition that allows
us to represent "the unique element such that
|
| Ref | Expression |
|---|---|
| iota2df.1 |
|
| iota2df.2 |
|
| iota2df.3 |
|
| iota2df.4 |
|
| iota2df.5 |
|
| iota2df.6 |
|
| Ref | Expression |
|---|---|
| iota2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 |
. 2
| |
| 2 | iota2df.3 |
. . 3
| |
| 3 | simpr 108 |
. . . 4
| |
| 4 | 3 | eqeq2d 2092 |
. . 3
|
| 5 | 2, 4 | bibi12d 233 |
. 2
|
| 6 | iota2df.2 |
. . 3
| |
| 7 | iota1 4901 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | iota2df.4 |
. 2
| |
| 10 | iota2df.6 |
. 2
| |
| 11 | iota2df.5 |
. . 3
| |
| 12 | nfiota1 4889 |
. . . . 5
| |
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | 13, 10 | nfeqd 2233 |
. . 3
|
| 15 | 11, 14 | nfbid 1520 |
. 2
|
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 2650 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: iota2d 4912 iota2 4913 riota2df 5508 |
| Copyright terms: Public domain | W3C validator |