ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expival Unicode version

Theorem expival 9478
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
expival  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )

Proof of Theorem expival
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3356 . . . . 5  |-  ( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  =  1 )
2 ax-1cn 7069 . . . . 5  |-  1  e.  CC
31, 2syl6eqel 2169 . . . 4  |-  ( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
43a1i 9 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC ) )
5 elnnz 8361 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
6 elnnuz 8655 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
75, 6bitr3i 184 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  N  e.  ( ZZ>= `  1 )
)
87biimpi 118 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  0  <  N )  ->  N  e.  ( ZZ>= ` 
1 ) )
98adantll 459 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  N  e.  ( ZZ>= `  1 )
)
10 cnex 7097 . . . . . . . . . . . 12  |-  CC  e.  _V
1110a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  CC  e.  _V )
12 simpl 107 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  ->  A  e.  CC )
13 elnnuz 8655 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  z  e.  ( ZZ>= `  1 )
)
14 fvconst2g 5396 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  z  e.  NN )  ->  ( ( NN  X.  { A } ) `  z )  =  A )
1513, 14sylan2br 282 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  z )  =  A )
1615eleq1d 2147 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( NN 
X.  { A }
) `  z )  e.  CC  <->  A  e.  CC ) )
1712, 16mpbird 165 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  z )  e.  CC )
1817adantlr 460 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  z )  e.  CC )
1918adantlr 460 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N )  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
20 mulcl 7100 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
2120adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
229, 11, 19, 21iseqcl 9443 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N )  e.  CC )
23 iftrue 3356 . . . . . . . . . . . 12  |-  ( 0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 N ) )
2423eleq1d 2147 . . . . . . . . . . 11  |-  ( 0  <  N  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )  e.  CC ) )
2524adantl 271 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )  e.  CC ) )
2622, 25mpbird 165 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  if (
0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC )
2726ex 113 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( 0  <  N  ->  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
2827adantr 270 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (
0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
29283adantl3 1096 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  (
0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
30 simpll2 978 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  ZZ )
3130znegcld 8471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ZZ )
32 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <  N )
3330zred 8469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  RR )
34 0red 7120 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  e.  RR )
3533, 34lenltd 7227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <_  0  <->  -.  0  <  N ) )
3632, 35mpbird 165 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <_  0 )
37 simplr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  N  =  0 )
3837neneqad 2324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  =/=  0 )
3938necomd 2331 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  =/=  N )
40 0z 8362 . . . . . . . . . . . . . . . . 17  |-  0  e.  ZZ
41 zltlen 8426 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
4240, 41mpan2 415 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/= 
N ) ) )
43423ad2ant2 960 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
4443ad2antrr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/= 
N ) ) )
4536, 39, 44mpbir2and 885 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <  0 )
4633lt0neg1d 7616 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  0  <  -u N ) )
4745, 46mpbid 145 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  <  -u N )
48 elnnz 8361 . . . . . . . . . . . 12  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
4931, 47, 48sylanbrc 408 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  NN )
50 elnnuz 8655 . . . . . . . . . . 11  |-  ( -u N  e.  NN  <->  -u N  e.  ( ZZ>= `  1 )
)
5149, 50sylib 120 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ( ZZ>= `  1 )
)
5210a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  CC  e.  _V )
53173ad2antl1 1100 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  z  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  z )  e.  CC )
5453adantlr 460 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
5554adantlr 460 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
5620adantl 271 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
5751, 52, 55, 56iseqcl 9443 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N )  e.  CC )
58 simpll1 977 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A  e.  CC )
59 expivallem 9477 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
60593com23 1144 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u N  e.  NN  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
61603expia 1140 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u N  e.  NN )  ->  ( A #  0  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 ) )
6258, 49, 61syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 ) )
6339neneqd 2266 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  =  N )
64 ioran 701 . . . . . . . . . . . . 13  |-  ( -.  ( 0  <  N  \/  0  =  N
)  <->  ( -.  0  <  N  /\  -.  0  =  N ) )
6532, 63, 64sylanbrc 408 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  ( 0  <  N  \/  0  =  N
) )
66 zleloe 8398 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
6740, 66mpan 414 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
68673ad2ant2 960 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
6968ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
7065, 69mtbird 630 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <_  N )
7170pm2.21d 581 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) #  0 ) )
72 simpll3 979 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  \/  0  <_  N ) )
7362, 71, 72mpjaod 670 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
7457, 73recclapd 7869 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) )  e.  CC )
75 iffalse 3359 . . . . . . . . . 10  |-  ( -.  0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) ) )
7675eleq1d 2147 . . . . . . . . 9  |-  ( -.  0  <  N  -> 
( if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC  <->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) )  e.  CC ) )
7776adantl 271 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) )  e.  CC ) )
7874, 77mpbird 165 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC )
7978ex 113 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  ( -.  0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
80 zdclt 8425 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
8140, 80mpan 414 . . . . . . . . . 10  |-  ( N  e.  ZZ  -> DECID  0  <  N )
82 df-dc 776 . . . . . . . . . 10  |-  (DECID  0  < 
N  <->  ( 0  < 
N  \/  -.  0  <  N ) )
8381, 82sylib 120 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
0  <  N  \/  -.  0  <  N ) )
8483adantl 271 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( 0  <  N  \/  -.  0  <  N
) )
8584adantr 270 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (
0  <  N  \/  -.  0  <  N ) )
86853adantl3 1096 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  (
0  <  N  \/  -.  0  <  N ) )
8729, 79, 86mpjaod 670 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC )
88 iffalse 3359 . . . . . . 7  |-  ( -.  N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  =  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )
8988eleq1d 2147 . . . . . 6  |-  ( -.  N  =  0  -> 
( if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC  <->  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
9089adantl 271 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  ( if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC  <->  if (
0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC ) )
9187, 90mpbird 165 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
9291ex 113 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( -.  N  =  0  ->  if ( N  =  0 , 
1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC ) )
93 zdceq 8423 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9440, 93mpan2 415 . . . . 5  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
95 df-dc 776 . . . . 5  |-  (DECID  N  =  0  <->  ( N  =  0  \/  -.  N  =  0 ) )
9694, 95sylib 120 . . . 4  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
97963ad2ant2 960 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  =  0  \/  -.  N  =  0 ) )
984, 92, 97mpjaod 670 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
99 sneq 3409 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
10099xpeq2d 4387 . . . . . . 7  |-  ( x  =  A  ->  ( NN  X.  { x }
)  =  ( NN 
X.  { A }
) )
101 iseqeq3 9436 . . . . . . 7  |-  ( ( NN  X.  { x } )  =  ( NN  X.  { A } )  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC )  =  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) )
102100, 101syl 14 . . . . . 6  |-  ( x  =  A  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC )  =  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) )
103102fveq1d 5200 . . . . 5  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  y )
)
104102fveq1d 5200 . . . . . 6  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  -u y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) )
105104oveq2d 5548 . . . . 5  |-  ( x  =  A  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  -u y
) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) ) )
106103, 105ifeq12d 3368 . . . 4  |-  ( x  =  A  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) )  =  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y ) ) ) )
107106ifeq2d 3367 . . 3  |-  ( x  =  A  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) ) )  =  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) ) ) ) )
108 eqeq1 2087 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
109 breq2 3789 . . . . 5  |-  ( y  =  N  ->  (
0  <  y  <->  0  <  N ) )
110 fveq2 5198 . . . . 5  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  y )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )
)
111 negeq 7301 . . . . . . 7  |-  ( y  =  N  ->  -u y  =  -u N )
112111fveq2d 5202 . . . . . 6  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) )
113112oveq2d 5548 . . . . 5  |-  ( y  =  N  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )
114109, 110, 113ifbieq12d 3375 . . . 4  |-  ( y  =  N  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y
) ) )  =  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )
115108, 114ifbieq2d 3373 . . 3  |-  ( y  =  N  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y
) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
116 df-iexp 9476 . . 3  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) ) ) )
117107, 115, 116ovmpt2g 5655 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
11898, 117syld3an3 1214 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   _Vcvv 2601   ifcif 3351   {csn 3398   class class class wbr 3785    X. cxp 4361   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    x. cmul 6986    < clt 7153    <_ cle 7154   -ucneg 7280   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351   ZZ>=cuz 8619    seqcseq 9431   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expinnval  9479  exp0  9480  expnegap0  9484
  Copyright terms: Public domain W3C validator