ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfeq Unicode version

Theorem iseqfeq 9451
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.)
Hypotheses
Ref Expression
iseqfeq.1  |-  ( ph  ->  M  e.  ZZ )
iseqfeq.s  |-  ( ph  ->  S  e.  V )
iseqfeq.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqfeq.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
iseqfeq.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqfeq  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  G ,  S ) )
Distinct variable groups:    .+ , k, x, y    k, F, x, y    k, G, x, y    k, M, x, y    S, k, x, y    ph, k, x, y
Allowed substitution hints:    V( x, y, k)

Proof of Theorem iseqfeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 iseqfeq.1 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 iseqfeq.s . . 3  |-  ( ph  ->  S  e.  V )
3 iseqfeq.f . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 iseqfeq.pl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4iseqfn 9441 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  Fn  ( ZZ>= `  M
) )
6 iseqfeq.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
76ralrimiva 2434 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( G `  k ) )
8 fveq2 5198 . . . . . . 7  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
9 fveq2 5198 . . . . . . 7  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
108, 9eqeq12d 2095 . . . . . 6  |-  ( k  =  x  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  x )  =  ( G `  x ) ) )
1110rspcv 2697 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  =  ( G `  k
)  ->  ( F `  x )  =  ( G `  x ) ) )
127, 11mpan9 275 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( G `  x ) )
1312, 3eqeltrrd 2156 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
141, 2, 13, 4iseqfn 9441 . 2  |-  ( ph  ->  seq M (  .+  ,  G ,  S )  Fn  ( ZZ>= `  M
) )
15 simpr 108 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
16 elfzuz 9041 . . . . 5  |-  ( k  e.  ( M ... z )  ->  k  e.  ( ZZ>= `  M )
)
1716, 6sylan2 280 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... z ) )  ->  ( F `  k )  =  ( G `  k ) )
1817adantlr 460 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ( F `  k )  =  ( G `  k ) )
192adantr 270 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  S  e.  V )
203adantlr 460 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2113adantlr 460 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
224adantlr 460 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2315, 18, 19, 20, 21, 22iseqfveq 9450 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  G ,  S ) `
 z ) )
245, 14, 23eqfnfvd 5289 1  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  G ,  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   ` cfv 4922  (class class class)co 5532   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator