| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqfeq | GIF version | ||
| Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) |
| Ref | Expression |
|---|---|
| iseqfeq.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iseqfeq.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| iseqfeq.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| iseqfeq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| iseqfeq.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| iseqfeq | ⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqfeq.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | iseqfeq.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | iseqfeq.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 4 | iseqfeq.pl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | iseqfn 9441 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ≥‘𝑀)) |
| 6 | iseqfeq.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 7 | 6 | ralrimiva 2434 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 8 | fveq2 5198 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 9 | fveq2 5198 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) | |
| 10 | 8, 9 | eqeq12d 2095 | . . . . . 6 ⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 11 | 10 | rspcv 2697 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘) → (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 12 | 7, 11 | mpan9 275 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 13 | 12, 3 | eqeltrrd 2156 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 14 | 1, 2, 13, 4 | iseqfn 9441 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺, 𝑆) Fn (ℤ≥‘𝑀)) |
| 15 | simpr 108 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) | |
| 16 | elfzuz 9041 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑧) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 17 | 16, 6 | sylan2 280 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 18 | 17 | adantlr 460 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 19 | 2 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → 𝑆 ∈ 𝑉) |
| 20 | 3 | adantlr 460 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 21 | 13 | adantlr 460 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 22 | 4 | adantlr 460 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 23 | 15, 18, 19, 20, 21, 22 | iseqfveq 9450 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐺, 𝑆)‘𝑧)) |
| 24 | 5, 14, 23 | eqfnfvd 5289 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ‘cfv 4922 (class class class)co 5532 ℤcz 8351 ℤ≥cuz 8619 ...cfz 9029 seqcseq 9431 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-iseq 9432 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |