ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfveq2 Unicode version

Theorem iseqfveq2 9448
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
iseqfveq2.2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  ( G `
 K ) )
iseqfveq2.s  |-  ( ph  ->  S  e.  V )
iseqfveq2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqfveq2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
iseqfveq2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqfveq2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
iseqfveq2.4  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
iseqfveq2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) )
Distinct variable groups:    x, k, y, F    k, G, x, y    k, K, x, y    k, N, x, y    ph, k, x, y   
k, M, x, y    .+ , k, x, y    S, k, x, y
Allowed substitution hints:    V( x, y, k)

Proof of Theorem iseqfveq2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqfveq2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 9051 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2141 . . . . . 6  |-  ( z  =  K  ->  (
z  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5198 . . . . . . 7  |-  ( z  =  K  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 K ) )
6 fveq2 5198 . . . . . . 7  |-  ( z  =  K  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) )
75, 6eqeq12d 2095 . . . . . 6  |-  ( z  =  K  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) ) )
84, 7imbi12d 232 . . . . 5  |-  ( z  =  K  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) ) ) )
98imbi2d 228 . . . 4  |-  ( z  =  K  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 K )  =  (  seq K ( 
.+  ,  G ,  S ) `  K
) ) ) ) )
10 eleq1 2141 . . . . . 6  |-  ( z  =  w  ->  (
z  e.  ( K ... N )  <->  w  e.  ( K ... N ) ) )
11 fveq2 5198 . . . . . . 7  |-  ( z  =  w  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 w ) )
12 fveq2 5198 . . . . . . 7  |-  ( z  =  w  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) )
1311, 12eqeq12d 2095 . . . . . 6  |-  ( z  =  w  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  w
)  =  (  seq K (  .+  ,  G ,  S ) `  w ) ) )
1410, 13imbi12d 232 . . . . 5  |-  ( z  =  w  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) ) ) )
1514imbi2d 228 . . . 4  |-  ( z  =  w  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) ) ) ) )
16 eleq1 2141 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
z  e.  ( K ... N )  <->  ( w  +  1 )  e.  ( K ... N
) ) )
17 fveq2 5198 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) ) )
18 fveq2 5198 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) )
1917, 18eqeq12d 2095 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  (
w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) ) ) )
2016, 19imbi12d 232 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( (
w  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) )
2120imbi2d 228 . . . 4  |-  ( z  =  ( w  + 
1 )  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( ( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) ) )
22 eleq1 2141 . . . . . 6  |-  ( z  =  N  ->  (
z  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
23 fveq2 5198 . . . . . . 7  |-  ( z  =  N  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
24 fveq2 5198 . . . . . . 7  |-  ( z  =  N  ->  (  seq K (  .+  ,  G ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 N ) )
2523, 24eqeq12d 2095 . . . . . 6  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  F ,  S ) `
 z )  =  (  seq K ( 
.+  ,  G ,  S ) `  z
)  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) )
2622, 25imbi12d 232 . . . . 5  |-  ( z  =  N  ->  (
( z  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  z
)  =  (  seq K (  .+  ,  G ,  S ) `  z ) )  <->  ( N  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  (  seq K (  .+  ,  G ,  S ) `
 N ) ) ) )
2726imbi2d 228 . . . 4  |-  ( z  =  N  ->  (
( ph  ->  ( z  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ,  S ) `  z )  =  (  seq K (  .+  ,  G ,  S ) `
 z ) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 N )  =  (  seq K ( 
.+  ,  G ,  S ) `  N
) ) ) ) )
28 iseqfveq2.2 . . . . . . 7  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  ( G `
 K ) )
29 iseqfveq2.1 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
30 eluzelz 8628 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
3129, 30syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
32 iseqfveq2.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
33 iseqfveq2.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( G `  x )  e.  S
)
34 iseqfveq2.pl . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3531, 32, 33, 34iseq1 9442 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  G ,  S ) `  K
)  =  ( G `
 K ) )
3628, 35eqtr4d 2116 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) )
3736a1d 22 . . . . 5  |-  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  (  seq K (  .+  ,  G ,  S ) `  K ) ) )
3837a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  (  seq K (  .+  ,  G ,  S ) `
 K ) ) ) )
39 peano2fzr 9056 . . . . . . . . . 10  |-  ( ( w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) )  ->  w  e.  ( K ... N ) )
4039adantl 271 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( K ... N ) )
4140expr 367 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  +  1 )  e.  ( K ... N )  ->  w  e.  ( K ... N
) ) )
4241imim1d 74 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) ) ) )
43 oveq1 5539 . . . . . . . . . 10  |-  ( (  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( F `  ( w  +  1 ) ) ) )
44 simprl 497 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( ZZ>= `  K )
)
4529adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  K  e.  ( ZZ>= `  M )
)
46 uztrn 8635 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  w  e.  ( ZZ>= `  M )
)
4744, 45, 46syl2anc 403 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  w  e.  ( ZZ>= `  M )
)
4832adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  S  e.  V )
49 iseqfveq2.f . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
5049adantlr 460 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
5134adantlr 460 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5247, 48, 50, 51iseqp1 9445 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  w
)  .+  ( F `  ( w  +  1 ) ) ) )
5333adantlr 460 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ( ZZ>= `  K )  /\  (
w  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  K ) )  ->  ( G `  x )  e.  S
)
5444, 48, 53, 51iseqp1 9445 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) )  =  ( (  seq K ( 
.+  ,  G ,  S ) `  w
)  .+  ( G `  ( w  +  1 ) ) ) )
55 eluzp1p1 8644 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5655ad2antrl 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
57 elfzuz3 9042 . . . . . . . . . . . . . . . 16  |-  ( ( w  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( w  +  1 ) ) )
5857ad2antll 474 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( w  +  1 ) ) )
59 elfzuzb 9039 . . . . . . . . . . . . . . 15  |-  ( ( w  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
w  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( w  +  1 ) ) ) )
6056, 58, 59sylanbrc 408 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( w  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
61 iseqfveq2.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
6261ralrimiva 2434 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  ( ( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k ) )
6362adantr 270 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  A. k  e.  ( ( K  + 
1 ) ... N
) ( F `  k )  =  ( G `  k ) )
64 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( w  + 
1 )  ->  ( F `  k )  =  ( F `  ( w  +  1
) ) )
65 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( w  + 
1 )  ->  ( G `  k )  =  ( G `  ( w  +  1
) ) )
6664, 65eqeq12d 2095 . . . . . . . . . . . . . . 15  |-  ( k  =  ( w  + 
1 )  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  ( w  +  1 ) )  =  ( G `  ( w  +  1 ) ) ) )
6766rspcv 2697 . . . . . . . . . . . . . 14  |-  ( ( w  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. k  e.  (
( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k )  -> 
( F `  (
w  +  1 ) )  =  ( G `
 ( w  + 
1 ) ) ) )
6860, 63, 67sylc 61 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( w  +  1 ) )  =  ( G `  ( w  +  1 ) ) )
6968oveq2d 5548 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq K (  .+  ,  G ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( G `  ( w  +  1 ) ) ) )
7054, 69eqtr4d 2116 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) )  =  ( (  seq K ( 
.+  ,  G ,  S ) `  w
)  .+  ( F `  ( w  +  1 ) ) ) )
7152, 70eqeq12d 2095 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) )  <->  ( (  seq M (  .+  ,  F ,  S ) `  w )  .+  ( F `  ( w  +  1 ) ) )  =  ( (  seq K (  .+  ,  G ,  S ) `
 w )  .+  ( F `  ( w  +  1 ) ) ) ) )
7243, 71syl5ibr 154 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ZZ>= `  K )  /\  ( w  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) )
7372expr 367 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  +  1 )  e.  ( K ... N )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) )
7473a2d 26 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) )
7542, 74syld 44 . . . . . 6  |-  ( (
ph  /\  w  e.  ( ZZ>= `  K )
)  ->  ( (
w  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq K ( 
.+  ,  G ,  S ) `  w
) )  ->  (
( w  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( w  + 
1 ) )  =  (  seq K ( 
.+  ,  G ,  S ) `  (
w  +  1 ) ) ) ) )
7675expcom 114 . . . . 5  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) )  ->  ( ( w  +  1 )  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `
 ( w  + 
1 ) ) ) ) ) )
7776a2d 26 . . . 4  |-  ( w  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( w  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq K (  .+  ,  G ,  S ) `
 w ) ) )  ->  ( ph  ->  ( ( w  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  (
w  +  1 ) )  =  (  seq K (  .+  ,  G ,  S ) `  ( w  +  1 ) ) ) ) ) )
789, 15, 21, 27, 38, 77uzind4 8676 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) ) )
791, 78mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) ) )
803, 79mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  (  seq K (  .+  ,  G ,  S ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  iseqfeq2  9449  iseqfveq  9450
  Copyright terms: Public domain W3C validator