ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfveq2 GIF version

Theorem iseqfveq2 9448
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
iseqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))
iseqfveq2.s (𝜑𝑆𝑉)
iseqfveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqfveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
iseqfveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqfveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
iseqfveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
iseqfveq2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem iseqfveq2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqfveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 9051 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2141 . . . . . 6 (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 5198 . . . . . . 7 (𝑧 = 𝐾 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))
6 fveq2 5198 . . . . . . 7 (𝑧 = 𝐾 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))
75, 6eqeq12d 2095 . . . . . 6 (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)))
84, 7imbi12d 232 . . . . 5 (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))))
98imbi2d 228 . . . 4 (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)))))
10 eleq1 2141 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁)))
11 fveq2 5198 . . . . . . 7 (𝑧 = 𝑤 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑤))
12 fveq2 5198 . . . . . . 7 (𝑧 = 𝑤 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))
1311, 12eqeq12d 2095 . . . . . 6 (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)))
1410, 13imbi12d 232 . . . . 5 (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))))
1514imbi2d 228 . . . 4 (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)))))
16 eleq1 2141 . . . . . 6 (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁)))
17 fveq2 5198 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)))
18 fveq2 5198 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))
1917, 18eqeq12d 2095 . . . . . 6 (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))
2016, 19imbi12d 232 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))
2120imbi2d 228 . . . 4 (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))))
22 eleq1 2141 . . . . . 6 (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 5198 . . . . . . 7 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
24 fveq2 5198 . . . . . . 7 (𝑧 = 𝑁 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))
2523, 24eqeq12d 2095 . . . . . 6 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)))
2622, 25imbi12d 232 . . . . 5 (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))))
2726imbi2d 228 . . . 4 (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)))))
28 iseqfveq2.2 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))
29 iseqfveq2.1 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 8628 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 14 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
32 iseqfveq2.s . . . . . . . 8 (𝜑𝑆𝑉)
33 iseqfveq2.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
34 iseqfveq2.pl . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3531, 32, 33, 34iseq1 9442 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐺, 𝑆)‘𝐾) = (𝐺𝐾))
3628, 35eqtr4d 2116 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))
3736a1d 22 . . . . 5 (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)))
3837a1i 9 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))))
39 peano2fzr 9056 . . . . . . . . . 10 ((𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁))
4039adantl 271 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁))
4140expr 367 . . . . . . . 8 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁)))
4241imim1d 74 . . . . . . 7 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))))
43 oveq1 5539 . . . . . . . . . 10 ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))))
44 simprl 497 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝐾))
4529adantr 270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 8635 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑤 ∈ (ℤ𝑀))
4744, 45, 46syl2anc 403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝑀))
4832adantr 270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑆𝑉)
49 iseqfveq2.f . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
5049adantlr 460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
5134adantlr 460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5247, 48, 50, 51iseqp1 9445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))))
5333adantlr 460 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
5444, 48, 53, 51iseqp1 9445 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐺‘(𝑤 + 1))))
55 eluzp1p1 8644 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℤ𝐾) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
5655ad2antrl 473 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
57 elfzuz3 9042 . . . . . . . . . . . . . . . 16 ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
5857ad2antll 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
59 elfzuzb 9039 . . . . . . . . . . . . . . 15 ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑤 + 1))))
6056, 58, 59sylanbrc 408 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁))
61 iseqfveq2.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
6261ralrimiva 2434 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
6362adantr 270 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
64 fveq2 5198 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑤 + 1) → (𝐹𝑘) = (𝐹‘(𝑤 + 1)))
65 fveq2 5198 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑤 + 1) → (𝐺𝑘) = (𝐺‘(𝑤 + 1)))
6664, 65eqeq12d 2095 . . . . . . . . . . . . . . 15 (𝑘 = (𝑤 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))))
6766rspcv 2697 . . . . . . . . . . . . . 14 ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))))
6860, 63, 67sylc 61 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))
6968oveq2d 5548 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐺‘(𝑤 + 1))))
7054, 69eqtr4d 2116 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))))
7152, 70eqeq12d 2095 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1)))))
7243, 71syl5ibr 154 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))
7372expr 367 . . . . . . . 8 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))
7473a2d 26 . . . . . . 7 ((𝜑𝑤 ∈ (ℤ𝐾)) → (((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))
7542, 74syld 44 . . . . . 6 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))
7675expcom 114 . . . . 5 (𝑤 ∈ (ℤ𝐾) → (𝜑 → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))))
7776a2d 26 . . . 4 (𝑤 ∈ (ℤ𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))))
789, 15, 21, 27, 38, 77uzind4 8676 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))))
791, 78mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)))
803, 79mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  iseqfeq2  9449  iseqfveq  9450
  Copyright terms: Public domain W3C validator