ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqss Unicode version

Theorem iseqss 9446
Description: Specifying a larger universe for  seq. As long as  F and  .+ are closed over  S, then any set which contains  S can be used as the last argument to  seq. This theorem does not allow  T to be a proper class, however. It also currently requires that  .+ be closed over  T (as well as  S). (Contributed by Jim Kingdon, 18-Aug-2021.)
Hypotheses
Ref Expression
iseqss.m  |-  ( ph  ->  M  e.  ZZ )
iseqss.t  |-  ( ph  ->  T  e.  V )
iseqss.ss  |-  ( ph  ->  S  C_  T )
iseqss.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqss.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqss.plt  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
Assertion
Ref Expression
iseqss  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  F ,  T ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, T, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem iseqss
Dummy variables  k  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqss.m . . 3  |-  ( ph  ->  M  e.  ZZ )
2 iseqss.t . . . 4  |-  ( ph  ->  T  e.  V )
3 iseqss.ss . . . 4  |-  ( ph  ->  S  C_  T )
42, 3ssexd 3918 . . 3  |-  ( ph  ->  S  e.  _V )
5 iseqss.f . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6 iseqss.pl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
71, 4, 5, 6iseqfn 9441 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  Fn  ( ZZ>= `  M
) )
83sseld 2998 . . . . 5  |-  ( ph  ->  ( ( F `  x )  e.  S  ->  ( F `  x
)  e.  T ) )
98adantr 270 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F `  x )  e.  S  ->  ( F `
 x )  e.  T ) )
105, 9mpd 13 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
11 iseqss.plt . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
121, 2, 10, 11iseqfn 9441 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  T )  Fn  ( ZZ>= `  M
) )
13 fveq2 5198 . . . . . 6  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 M ) )
14 fveq2 5198 . . . . . 6  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 M ) )
1513, 14eqeq12d 2095 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) ) )
1615imbi2d 228 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  M )  =  (  seq M (  .+  ,  F ,  T ) `
 M ) ) ) )
17 fveq2 5198 . . . . . 6  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 k ) )
18 fveq2 5198 . . . . . 6  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 k ) )
1917, 18eqeq12d 2095 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k ) ) )
2019imbi2d 228 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  k )  =  (  seq M (  .+  ,  F ,  T ) `
 k ) ) ) )
21 fveq2 5198 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) ) )
22 fveq2 5198 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) )
2321, 22eqeq12d 2095 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `  ( k  +  1 ) ) ) )
2423imbi2d 228 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
25 fveq2 5198 . . . . . 6  |-  ( w  =  n  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 n ) )
26 fveq2 5198 . . . . . 6  |-  ( w  =  n  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) )
2725, 26eqeq12d 2095 . . . . 5  |-  ( w  =  n  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  n
)  =  (  seq M (  .+  ,  F ,  T ) `  n ) ) )
2827imbi2d 228 . . . 4  |-  ( w  =  n  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  n )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) ) ) )
291, 4, 5, 6iseq1 9442 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  ( F `
 M ) )
301, 2, 10, 11iseq1 9442 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  T ) `  M
)  =  ( F `
 M ) )
3129, 30eqtr4d 2116 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) )
3231a1i 9 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) ) )
33 oveq1 5539 . . . . . . 7  |-  ( (  seq M (  .+  ,  F ,  S ) `
 k )  =  (  seq M ( 
.+  ,  F ,  T ) `  k
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ,  T ) `
 k )  .+  ( F `  ( k  +  1 ) ) ) )
34 simpr 108 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
354adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  S  e.  _V )
365adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
376adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3834, 35, 36, 37iseqp1 9445 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
392adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  T  e.  V )
4010adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  T
)
4111adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  ( x  e.  T  /\  y  e.  T ) )  -> 
( x  .+  y
)  e.  T )
4234, 39, 40, 41iseqp1 9445 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  T ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  T ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
4338, 42eqeq12d 2095 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) )  <->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ,  T ) `
 k )  .+  ( F `  ( k  +  1 ) ) ) ) )
4433, 43syl5ibr 154 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  =  (  seq M (  .+  ,  F ,  T ) `
 k )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  (  seq M ( 
.+  ,  F ,  T ) `  (
k  +  1 ) ) ) )
4544expcom 114 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
4645a2d 26 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k ) )  -> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
4716, 20, 24, 28, 32, 46uzind4 8676 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  n
)  =  (  seq M (  .+  ,  F ,  T ) `  n ) ) )
4847impcom 123 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  S ) `  n )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) )
497, 12, 48eqfnfvd 5289 1  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  F ,  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    C_ wss 2973   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  serige0  9473  serile  9474  iserile  10180  climserile  10183
  Copyright terms: Public domain W3C validator