ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serige0 Unicode version

Theorem serige0 9473
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Jim Kingdon, 22-Aug-2021.)
Hypotheses
Ref Expression
serige0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
serige0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
serige0.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
serige0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ,  CC ) `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem serige0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serige0.1 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 8624 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
4 cnex 7097 . . . . . 6  |-  CC  e.  _V
54a1i 9 . . . . 5  |-  ( ph  ->  CC  e.  _V )
6 ssrab2 3079 . . . . . . 7  |-  { x  e.  RR  |  0  <_  x }  C_  RR
7 ax-resscn 7068 . . . . . . 7  |-  RR  C_  CC
86, 7sstri 3008 . . . . . 6  |-  { x  e.  RR  |  0  <_  x }  C_  CC
98a1i 9 . . . . 5  |-  ( ph  ->  { x  e.  RR  |  0  <_  x }  C_  CC )
10 serige0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
11 serige0.3 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  ( F `  k ) )
12 breq2 3789 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  (
0  <_  x  <->  0  <_  ( F `  k ) ) )
1312elrab 2749 . . . . . 6  |-  ( ( F `  k )  e.  { x  e.  RR  |  0  <_  x }  <->  ( ( F `
 k )  e.  RR  /\  0  <_ 
( F `  k
) ) )
1410, 11, 13sylanbrc 408 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  {
x  e.  RR  | 
0  <_  x }
)
15 breq2 3789 . . . . . . . 8  |-  ( x  =  k  ->  (
0  <_  x  <->  0  <_  k ) )
1615elrab 2749 . . . . . . 7  |-  ( k  e.  { x  e.  RR  |  0  <_  x }  <->  ( k  e.  RR  /\  0  <_ 
k ) )
17 breq2 3789 . . . . . . . 8  |-  ( x  =  y  ->  (
0  <_  x  <->  0  <_  y ) )
1817elrab 2749 . . . . . . 7  |-  ( y  e.  { x  e.  RR  |  0  <_  x }  <->  ( y  e.  RR  /\  0  <_ 
y ) )
19 readdcl 7099 . . . . . . . . 9  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
2019ad2ant2r 492 . . . . . . . 8  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( k  +  y )  e.  RR )
21 addge0 7555 . . . . . . . . 9  |-  ( ( ( k  e.  RR  /\  y  e.  RR )  /\  ( 0  <_ 
k  /\  0  <_  y ) )  ->  0  <_  ( k  +  y ) )
2221an4s 552 . . . . . . . 8  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  0  <_  ( k  +  y ) )
23 breq2 3789 . . . . . . . . 9  |-  ( x  =  ( k  +  y )  ->  (
0  <_  x  <->  0  <_  ( k  +  y ) ) )
2423elrab 2749 . . . . . . . 8  |-  ( ( k  +  y )  e.  { x  e.  RR  |  0  <_  x }  <->  ( ( k  +  y )  e.  RR  /\  0  <_ 
( k  +  y ) ) )
2520, 22, 24sylanbrc 408 . . . . . . 7  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( k  +  y )  e. 
{ x  e.  RR  |  0  <_  x } )
2616, 18, 25syl2anb 285 . . . . . 6  |-  ( ( k  e.  { x  e.  RR  |  0  <_  x }  /\  y  e.  { x  e.  RR  |  0  <_  x } )  ->  (
k  +  y )  e.  { x  e.  RR  |  0  <_  x } )
2726adantl 271 . . . . 5  |-  ( (
ph  /\  ( k  e.  { x  e.  RR  |  0  <_  x }  /\  y  e.  {
x  e.  RR  | 
0  <_  x }
) )  ->  (
k  +  y )  e.  { x  e.  RR  |  0  <_  x } )
28 addcl 7098 . . . . . 6  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
2928adantl 271 . . . . 5  |-  ( (
ph  /\  ( k  e.  CC  /\  y  e.  CC ) )  -> 
( k  +  y )  e.  CC )
303, 5, 9, 14, 27, 29iseqss 9446 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ,  {
x  e.  RR  | 
0  <_  x }
)  =  seq M
(  +  ,  F ,  CC ) )
3130fveq1d 5200 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ,  { x  e.  RR  |  0  <_  x } ) `  N
)  =  (  seq M (  +  ,  F ,  CC ) `  N ) )
32 reex 7107 . . . . . 6  |-  RR  e.  _V
3332rabex 3922 . . . . 5  |-  { x  e.  RR  |  0  <_  x }  e.  _V
3433a1i 9 . . . 4  |-  ( ph  ->  { x  e.  RR  |  0  <_  x }  e.  _V )
351, 34, 14, 27iseqcl 9443 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ,  { x  e.  RR  |  0  <_  x } ) `  N
)  e.  { x  e.  RR  |  0  <_  x } )
3631, 35eqeltrrd 2156 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ,  CC ) `  N )  e.  { x  e.  RR  |  0  <_  x } )
37 breq2 3789 . . . 4  |-  ( x  =  (  seq M
(  +  ,  F ,  CC ) `  N
)  ->  ( 0  <_  x  <->  0  <_  (  seq M (  +  ,  F ,  CC ) `  N )
) )
3837elrab 2749 . . 3  |-  ( (  seq M (  +  ,  F ,  CC ) `  N )  e.  { x  e.  RR  |  0  <_  x } 
<->  ( (  seq M
(  +  ,  F ,  CC ) `  N
)  e.  RR  /\  0  <_  (  seq M
(  +  ,  F ,  CC ) `  N
) ) )
3938simprbi 269 . 2  |-  ( (  seq M (  +  ,  F ,  CC ) `  N )  e.  { x  e.  RR  |  0  <_  x }  ->  0  <_  (  seq M (  +  ,  F ,  CC ) `  N ) )
4036, 39syl 14 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ,  CC ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1433   {crab 2352   _Vcvv 2601    C_ wss 2973   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981    + caddc 6984    <_ cle 7154   ZZcz 8351   ZZ>=cuz 8619    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  serile  9474
  Copyright terms: Public domain W3C validator