ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqss GIF version

Theorem iseqss 9446
Description: Specifying a larger universe for seq. As long as 𝐹 and + are closed over 𝑆, then any set which contains 𝑆 can be used as the last argument to seq. This theorem does not allow 𝑇 to be a proper class, however. It also currently requires that + be closed over 𝑇 (as well as 𝑆). (Contributed by Jim Kingdon, 18-Aug-2021.)
Hypotheses
Ref Expression
iseqss.m (𝜑𝑀 ∈ ℤ)
iseqss.t (𝜑𝑇𝑉)
iseqss.ss (𝜑𝑆𝑇)
iseqss.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqss.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqss.plt ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
Assertion
Ref Expression
iseqss (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqss
Dummy variables 𝑘 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqss.m . . 3 (𝜑𝑀 ∈ ℤ)
2 iseqss.t . . . 4 (𝜑𝑇𝑉)
3 iseqss.ss . . . 4 (𝜑𝑆𝑇)
42, 3ssexd 3918 . . 3 (𝜑𝑆 ∈ V)
5 iseqss.f . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 iseqss.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6iseqfn 9441 . 2 (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀))
83sseld 2998 . . . . 5 (𝜑 → ((𝐹𝑥) ∈ 𝑆 → (𝐹𝑥) ∈ 𝑇))
98adantr 270 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹𝑥) ∈ 𝑆 → (𝐹𝑥) ∈ 𝑇))
105, 9mpd 13 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
11 iseqss.plt . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
121, 2, 10, 11iseqfn 9441 . 2 (𝜑 → seq𝑀( + , 𝐹, 𝑇) Fn (ℤ𝑀))
13 fveq2 5198 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
14 fveq2 5198 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))
1513, 14eqeq12d 2095 . . . . 5 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀)))
1615imbi2d 228 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))))
17 fveq2 5198 . . . . . 6 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑘))
18 fveq2 5198 . . . . . 6 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘))
1917, 18eqeq12d 2095 . . . . 5 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘)))
2019imbi2d 228 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘))))
21 fveq2 5198 . . . . . 6 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)))
22 fveq2 5198 . . . . . 6 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))
2321, 22eqeq12d 2095 . . . . 5 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1))))
2423imbi2d 228 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
25 fveq2 5198 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
26 fveq2 5198 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))
2725, 26eqeq12d 2095 . . . . 5 (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛)))
2827imbi2d 228 . . . 4 (𝑤 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))))
291, 4, 5, 6iseq1 9442 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
301, 2, 10, 11iseq1 9442 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑇)‘𝑀) = (𝐹𝑀))
3129, 30eqtr4d 2116 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))
3231a1i 9 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀)))
33 oveq1 5539 . . . . . . 7 ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1))))
34 simpr 108 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
354adantr 270 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑆 ∈ V)
365adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
376adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3834, 35, 36, 37iseqp1 9445 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
392adantr 270 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑇𝑉)
4010adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
4111adantlr 460 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
4234, 39, 40, 41iseqp1 9445 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1))))
4338, 42eqeq12d 2095 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1)))))
4433, 43syl5ibr 154 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1))))
4544expcom 114 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
4645a2d 26 . . . 4 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
4716, 20, 24, 28, 32, 46uzind4 8676 . . 3 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛)))
4847impcom 123 . 2 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))
497, 12, 48eqfnfvd 5289 1 (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  wss 2973  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  serige0  9473  serile  9474  iserile  10180  climserile  10183
  Copyright terms: Public domain W3C validator