| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2a | Unicode version | ||
| Description: Generalization rule for
restricted quantification. Note that |
| Ref | Expression |
|---|---|
| rgen2a.1 |
|
| Ref | Expression |
|---|---|
| rgen2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . . 5
| |
| 2 | eleq1 2141 |
. . . . 5
| |
| 3 | 1, 2 | dvelimor 1935 |
. . . 4
|
| 4 | eleq1 2141 |
. . . . . . . . 9
| |
| 5 | rgen2a.1 |
. . . . . . . . . 10
| |
| 6 | 5 | ex 113 |
. . . . . . . . 9
|
| 7 | 4, 6 | syl6bi 161 |
. . . . . . . 8
|
| 8 | 7 | pm2.43d 49 |
. . . . . . 7
|
| 9 | 8 | alimi 1384 |
. . . . . 6
|
| 10 | 9 | a1d 22 |
. . . . 5
|
| 11 | nfr 1451 |
. . . . . 6
| |
| 12 | 6 | alimi 1384 |
. . . . . 6
|
| 13 | 11, 12 | syl6 33 |
. . . . 5
|
| 14 | 10, 13 | jaoi 668 |
. . . 4
|
| 15 | 3, 14 | ax-mp 7 |
. . 3
|
| 16 | df-ral 2353 |
. . 3
| |
| 17 | 15, 16 | sylibr 132 |
. 2
|
| 18 | 17 | rgen 2416 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-ral 2353 |
| This theorem is referenced by: ordsucunielexmid 4274 onintexmid 4315 isoid 5470 issmo 5926 ecopover 6227 ecopoverg 6230 subf 7310 negiso 8033 cnref1o 8733 ioof 8994 fzof 9154 gcdf 10364 eucalgf 10437 qredeu 10479 |
| Copyright terms: Public domain | W3C validator |