ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmneg Unicode version

Theorem lcmneg 10456
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 10447 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
2 znegcl 8382 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
3 lcm0val 10447 . . . . . . . . 9  |-  ( -u N  e.  ZZ  ->  (
-u N lcm  0 )  =  0 )
42, 3syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -u N lcm  0 )  =  0 )
51, 4eqtr4d 2116 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
65ad2antlr 472 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
7 oveq2 5540 . . . . . . . 8  |-  ( M  =  0  ->  ( N lcm  M )  =  ( N lcm  0 ) )
8 oveq2 5540 . . . . . . . 8  |-  ( M  =  0  ->  ( -u N lcm  M )  =  ( -u N lcm  0
) )
97, 8eqeq12d 2095 . . . . . . 7  |-  ( M  =  0  ->  (
( N lcm  M )  =  ( -u N lcm  M )  <->  ( N lcm  0
)  =  ( -u N lcm  0 ) ) )
109adantl 271 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( N lcm  M )  =  (
-u N lcm  M )  <->  ( N lcm  0 )  =  ( -u N lcm  0
) ) )
116, 10mpbird 165 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  M )  =  ( -u N lcm  M ) )
12 lcmcom 10446 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( N lcm  M
) )
13 lcmcom 10446 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
142, 13sylan2 280 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
1512, 14eqeq12d 2095 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1615adantr 270 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1711, 16mpbird 165 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
18 neg0 7354 . . . . . . . 8  |-  -u 0  =  0
1918oveq2i 5543 . . . . . . 7  |-  ( M lcm  -u 0 )  =  ( M lcm  0 )
2019eqcomi 2085 . . . . . 6  |-  ( M lcm  0 )  =  ( M lcm  -u 0 )
21 oveq2 5540 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
22 negeq 7301 . . . . . . 7  |-  ( N  =  0  ->  -u N  =  -u 0 )
2322oveq2d 5548 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  -u N )  =  ( M lcm  -u 0
) )
2420, 21, 233eqtr4a 2139 . . . . 5  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2524adantl 271 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2617, 25jaodan 743 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  ( M lcm  -u N
) )
27 dvdslcm 10451 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
282, 27sylan2 280 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
29 simpr 108 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
30 lcmcl 10454 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
312, 30sylan2 280 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
3231nn0zd 8467 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  ZZ )
33 negdvdsb 10211 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M lcm  -u N )  e.  ZZ )  -> 
( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3429, 32, 33syl2anc 403 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3534anbi2d 451 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) )  <-> 
( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) ) )
3628, 35mpbird 165 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) ) )
3736adantr 270 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) ) )
38 zcn 8356 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3938negeq0d 7411 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  -u N  =  0 ) )
4039orbi2d 736 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  =  0  \/  N  =  0 )  <->  ( M  =  0  \/  -u N  =  0 ) ) )
4140notbid 624 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( -.  ( M  =  0  \/  N  =  0 )  <->  -.  ( M  =  0  \/  -u N  =  0 ) ) )
4241biimpa 290 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
4342adantll 459 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
44 lcmn0cl 10450 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
452, 44sylanl2 395 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
4643, 45syldan 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
47 simpl 107 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
48 3anass 923 . . . . . . 7  |-  ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M lcm  -u N )  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
4946, 47, 48sylanbrc 408 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm  -u N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
50 simpr 108 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
51 lcmledvds 10452 . . . . . 6  |-  ( ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  ->  (
( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) )  ->  ( M lcm  N )  <_  ( M lcm  -u N ) ) )
5249, 50, 51syl2anc 403 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  -u N
)  /\  N  ||  ( M lcm  -u N ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) ) )
5337, 52mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) )
54 dvdslcm 10451 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
5554adantr 270 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) )
56 simplr 496 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
57 lcmn0cl 10450 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
5857nnzd 8468 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  ZZ )
59 negdvdsb 10211 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ )  ->  ( N  ||  ( M lcm  N
)  <->  -u N  ||  ( M lcm  N ) ) )
6056, 58, 59syl2anc 403 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M lcm  N )  <->  -u N  ||  ( M lcm 
N ) ) )
6160anbi2d 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  <->  ( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) ) ) )
62 lcmledvds 10452 . . . . . . . . . 10  |-  ( ( ( ( M lcm  N
)  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  (
( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) )  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6362ex 113 . . . . . . . . 9  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
642, 63syl3an3 1204 . . . . . . . 8  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
65643expib 1141 . . . . . . 7  |-  ( ( M lcm  N )  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) ) )
6657, 47, 43, 65syl3c 62 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6761, 66sylbid 148 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  -> 
( M lcm  -u N
)  <_  ( M lcm  N ) ) )
6855, 67mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  <_  ( M lcm  N ) )
69 lcmcl 10454 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
7069nn0red 8342 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  RR )
7130nn0red 8342 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
722, 71sylan2 280 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
7370, 72letri3d 7226 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7473adantr 270 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7553, 68, 74mpbir2and 885 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  =  ( M lcm  -u N ) )
76 lcmmndc 10444 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
77 exmiddc 777 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7876, 77syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7926, 75, 78mpjaodan 744 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( M lcm  -u N
) )
8079eqcomd 2086 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981    <_ cle 7154   -ucneg 7280   NNcn 8039   NN0cn0 8288   ZZcz 8351    || cdvds 10195   lcm clcm 10442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-lcm 10443
This theorem is referenced by:  neglcm  10457  lcmabs  10458
  Copyright terms: Public domain W3C validator