ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemulge11 Unicode version

Theorem lemulge11 7944
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
lemulge11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )

Proof of Theorem lemulge11
StepHypRef Expression
1 ax-1rid 7083 . . 3  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
21ad2antrr 471 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  =  A )
3 simpll 495 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  e.  RR )
4 simprl 497 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  0  <_  A )
53, 4jca 300 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
6 simplr 496 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  B  e.  RR )
7 1re 7118 . . . . . 6  |-  1  e.  RR
8 0le1 7585 . . . . . 6  |-  0  <_  1
97, 8pm3.2i 266 . . . . 5  |-  ( 1  e.  RR  /\  0  <_  1 )
106, 9jctil 305 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )
115, 3, 10jca31 302 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) ) )
12 leid 7195 . . . . 5  |-  ( A  e.  RR  ->  A  <_  A )
1312ad2antrr 471 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  A )
14 simprr 498 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  1  <_  B )
1513, 14jca 300 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  <_  A  /\  1  <_  B ) )
16 lemul12a 7940 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )  ->  (
( A  <_  A  /\  1  <_  B )  ->  ( A  x.  1 )  <_  ( A  x.  B )
) )
1711, 15, 16sylc 61 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  <_  ( A  x.  B ) )
182, 17eqbrtrrd 3807 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    x. cmul 6986    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  lemulge12  7945  lemulge11d  8015  faclbnd  9668
  Copyright terms: Public domain W3C validator