| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxrlt | Unicode version | ||
| Description: The standard less-than
|
| Ref | Expression |
|---|---|
| ltxrlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr 7158 |
. . . . 5
| |
| 2 | 1 | breqi 3791 |
. . . 4
|
| 3 | brun 3831 |
. . . 4
| |
| 4 | 2, 3 | bitri 182 |
. . 3
|
| 5 | eleq1 2141 |
. . . . . . 7
| |
| 6 | breq1 3788 |
. . . . . . 7
| |
| 7 | 5, 6 | 3anbi13d 1245 |
. . . . . 6
|
| 8 | eleq1 2141 |
. . . . . . 7
| |
| 9 | breq2 3789 |
. . . . . . 7
| |
| 10 | 8, 9 | 3anbi23d 1246 |
. . . . . 6
|
| 11 | eqid 2081 |
. . . . . 6
| |
| 12 | 7, 10, 11 | brabg 4024 |
. . . . 5
|
| 13 | simp3 940 |
. . . . 5
| |
| 14 | 12, 13 | syl6bi 161 |
. . . 4
|
| 15 | brun 3831 |
. . . . 5
| |
| 16 | brxp 4393 |
. . . . . . . . . . 11
| |
| 17 | 16 | simprbi 269 |
. . . . . . . . . 10
|
| 18 | elsni 3416 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | renepnf 7166 |
. . . . . . . . 9
| |
| 22 | 21 | neneqd 2266 |
. . . . . . . 8
|
| 23 | pm2.24 583 |
. . . . . . . 8
| |
| 24 | 20, 22, 23 | syl6ci 1374 |
. . . . . . 7
|
| 25 | 24 | adantl 271 |
. . . . . 6
|
| 26 | brxp 4393 |
. . . . . . . . . . 11
| |
| 27 | 26 | simplbi 268 |
. . . . . . . . . 10
|
| 28 | elsni 3416 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | 29 | a1i 9 |
. . . . . . . 8
|
| 31 | renemnf 7167 |
. . . . . . . . 9
| |
| 32 | 31 | neneqd 2266 |
. . . . . . . 8
|
| 33 | pm2.24 583 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | syl6ci 1374 |
. . . . . . 7
|
| 35 | 34 | adantr 270 |
. . . . . 6
|
| 36 | 25, 35 | jaod 669 |
. . . . 5
|
| 37 | 15, 36 | syl5bi 150 |
. . . 4
|
| 38 | 14, 37 | jaod 669 |
. . 3
|
| 39 | 4, 38 | syl5bi 150 |
. 2
|
| 40 | 12 | 3adant3 958 |
. . . . . 6
|
| 41 | 40 | ibir 175 |
. . . . 5
|
| 42 | 41 | orcd 684 |
. . . 4
|
| 43 | 42, 4 | sylibr 132 |
. . 3
|
| 44 | 43 | 3expia 1140 |
. 2
|
| 45 | 39, 44 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-ltxr 7158 |
| This theorem is referenced by: axltirr 7179 axltwlin 7180 axlttrn 7181 axltadd 7182 axapti 7183 axmulgt0 7184 0lt1 7236 recexre 7678 recexgt0 7680 remulext1 7699 arch 8285 caucvgrelemcau 9866 caucvgre 9867 |
| Copyright terms: Public domain | W3C validator |