| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgrelemcau | Unicode version | ||
| Description: Lemma for caucvgre 9867. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgre.f |
|
| caucvgre.cau |
|
| Ref | Expression |
|---|---|
| caucvgrelemcau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 496 |
. . . . . . 7
| |
| 2 | 1 | nnred 8052 |
. . . . . 6
|
| 3 | simpr 108 |
. . . . . . 7
| |
| 4 | 3 | nnred 8052 |
. . . . . 6
|
| 5 | ltle 7198 |
. . . . . 6
| |
| 6 | 2, 4, 5 | syl2anc 403 |
. . . . 5
|
| 7 | eluznn 8687 |
. . . . . . . . . . . 12
| |
| 8 | 7 | ex 113 |
. . . . . . . . . . 11
|
| 9 | nnz 8370 |
. . . . . . . . . . . . 13
| |
| 10 | eluz1 8623 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
|
| 12 | simpr 108 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | syl6bi 161 |
. . . . . . . . . . 11
|
| 14 | 8, 13 | jcad 301 |
. . . . . . . . . 10
|
| 15 | nnz 8370 |
. . . . . . . . . . . 12
| |
| 16 | 15 | anim1i 333 |
. . . . . . . . . . 11
|
| 17 | 16, 11 | syl5ibr 154 |
. . . . . . . . . 10
|
| 18 | 14, 17 | impbid 127 |
. . . . . . . . 9
|
| 19 | 18 | adantl 271 |
. . . . . . . 8
|
| 20 | 19 | biimpar 291 |
. . . . . . 7
|
| 21 | caucvgre.cau |
. . . . . . . . 9
| |
| 22 | 21 | r19.21bi 2449 |
. . . . . . . 8
|
| 23 | 22 | r19.21bi 2449 |
. . . . . . 7
|
| 24 | 20, 23 | syldan 276 |
. . . . . 6
|
| 25 | 24 | expr 367 |
. . . . 5
|
| 26 | 6, 25 | syld 44 |
. . . 4
|
| 27 | ltxrlt 7178 |
. . . . 5
| |
| 28 | 2, 4, 27 | syl2anc 403 |
. . . 4
|
| 29 | caucvgre.f |
. . . . . . . . 9
| |
| 30 | 29 | ad2antrr 471 |
. . . . . . . 8
|
| 31 | 30, 1 | ffvelrnd 5324 |
. . . . . . 7
|
| 32 | 30, 3 | ffvelrnd 5324 |
. . . . . . . 8
|
| 33 | 1 | nnrecred 8085 |
. . . . . . . 8
|
| 34 | 32, 33 | readdcld 7148 |
. . . . . . 7
|
| 35 | ltxrlt 7178 |
. . . . . . 7
| |
| 36 | 31, 34, 35 | syl2anc 403 |
. . . . . 6
|
| 37 | nnap0 8068 |
. . . . . . . . . 10
| |
| 38 | 1, 37 | syl 14 |
. . . . . . . . 9
|
| 39 | caucvgrelemrec 9865 |
. . . . . . . . 9
| |
| 40 | 2, 38, 39 | syl2anc 403 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 5548 |
. . . . . . 7
|
| 42 | 41 | breq2d 3797 |
. . . . . 6
|
| 43 | 36, 42 | bitr4d 189 |
. . . . 5
|
| 44 | 31, 33 | readdcld 7148 |
. . . . . . 7
|
| 45 | ltxrlt 7178 |
. . . . . . 7
| |
| 46 | 32, 44, 45 | syl2anc 403 |
. . . . . 6
|
| 47 | 40 | oveq2d 5548 |
. . . . . . 7
|
| 48 | 47 | breq2d 3797 |
. . . . . 6
|
| 49 | 46, 48 | bitr4d 189 |
. . . . 5
|
| 50 | 43, 49 | anbi12d 456 |
. . . 4
|
| 51 | 26, 28, 50 | 3imtr3d 200 |
. . 3
|
| 52 | 51 | ralrimiva 2434 |
. 2
|
| 53 | 52 | ralrimiva 2434 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-z 8352 df-uz 8620 |
| This theorem is referenced by: caucvgre 9867 |
| Copyright terms: Public domain | W3C validator |