ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgrelemcau Unicode version

Theorem caucvgrelemcau 9866
Description: Lemma for caucvgre 9867. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgrelemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Distinct variable groups:    k, F, n    ph, k, n    k, r, n
Allowed substitution hints:    ph( r)    F( r)

Proof of Theorem caucvgrelemcau
StepHypRef Expression
1 simplr 496 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  NN )
21nnred 8052 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n  e.  RR )
3 simpr 108 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
43nnred 8052 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
5 ltle 7198 . . . . . 6  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  ->  n  <_  k )
)
62, 4, 5syl2anc 403 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  n  <_  k ) )
7 eluznn 8687 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87ex 113 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  k  e.  NN ) )
9 nnz 8370 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
10 eluz1 8623 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  ZZ  /\  n  <_ 
k ) ) )
12 simpr 108 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  <_  k )  ->  n  <_  k )
1311, 12syl6bi 161 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  n  <_  k ) )
148, 13jcad 301 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  ->  (
k  e.  NN  /\  n  <_  k ) ) )
15 nnz 8370 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
1615anim1i 333 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  n  <_  k )  -> 
( k  e.  ZZ  /\  n  <_  k )
)
1716, 11syl5ibr 154 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( k  e.  NN  /\  n  <_  k )  ->  k  e.  ( ZZ>= `  n ) ) )
1814, 17impbid 127 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
k  e.  ( ZZ>= `  n )  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
1918adantl 271 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  <->  ( k  e.  NN  /\  n  <_ 
k ) ) )
2019biimpar 291 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  k  e.  (
ZZ>= `  n ) )
21 caucvgre.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
2221r19.21bi 2449 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) ) )
2322r19.21bi 2449 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2420, 23syldan 276 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  NN  /\  n  <_  k ) )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) ) ) )
2524expr 367 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <_  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
266, 25syld 44 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  ->  ( ( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  /\  ( F `  k )  <  ( ( F `
 n )  +  ( 1  /  n
) ) ) ) )
27 ltxrlt 7178 . . . . 5  |-  ( ( n  e.  RR  /\  k  e.  RR )  ->  ( n  <  k  <->  n 
<RR  k ) )
282, 4, 27syl2anc 403 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <  k  <->  n  <RR  k ) )
29 caucvgre.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3029ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
3130, 1ffvelrnd 5324 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  n )  e.  RR )
3230, 3ffvelrnd 5324 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
331nnrecred 8085 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
1  /  n )  e.  RR )
3432, 33readdcld 7148 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( 1  /  n ) )  e.  RR )
35 ltxrlt 7178 . . . . . . 7  |-  ( ( ( F `  n
)  e.  RR  /\  ( ( F `  k )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 n )  < 
( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
3631, 34, 35syl2anc 403 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
37 nnap0 8068 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n #  0 )
381, 37syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  n #  0 )
39 caucvgrelemrec 9865 . . . . . . . . 9  |-  ( ( n  e.  RR  /\  n #  0 )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
402, 38, 39syl2anc 403 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( 1  /  n
) )
4140oveq2d 5548 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  ( 1  /  n ) ) )
4241breq2d 3797 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( 1  /  n ) ) ) )
4336, 42bitr4d 189 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( 1  /  n ) )  <->  ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
4431, 33readdcld 7148 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( 1  /  n ) )  e.  RR )
45 ltxrlt 7178 . . . . . . 7  |-  ( ( ( F `  k
)  e.  RR  /\  ( ( F `  n )  +  ( 1  /  n ) )  e.  RR )  ->  ( ( F `
 k )  < 
( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4632, 44, 45syl2anc 403 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4740oveq2d 5548 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  n )  +  ( 1  /  n ) ) )
4847breq2d 3797 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( 1  /  n ) ) ) )
4946, 48bitr4d 189 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( 1  /  n ) )  <->  ( F `  k )  <RR  ( ( F `  n )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )
5043, 49anbi12d 456 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( 1  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( 1  /  n ) ) )  <->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5126, 28, 503imtr3d 200 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN )  ->  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
5251ralrimiva 2434 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN  ( n  <RR  k  ->  ( ( F `
 n )  <RR  ( ( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k ) 
<RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
5352ralrimiva 2434 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   class class class wbr 3785   -->wf 4918   ` cfv 4922   iota_crio 5487  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    <RR cltrr 6985    x. cmul 6986    < clt 7153    <_ cle 7154   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-z 8352  df-uz 8620
This theorem is referenced by:  caucvgre  9867
  Copyright terms: Public domain W3C validator