ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul12d Unicode version

Theorem modqmul12d 9380
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul12d.1  |-  ( ph  ->  A  e.  ZZ )
modqmul12d.2  |-  ( ph  ->  B  e.  ZZ )
modqmul12d.3  |-  ( ph  ->  C  e.  ZZ )
modqmul12d.4  |-  ( ph  ->  D  e.  ZZ )
modqmul12d.5  |-  ( ph  ->  E  e.  QQ )
modqmul12d.egt0  |-  ( ph  ->  0  <  E )
modqmul12d.6  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
modqmul12d.7  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
Assertion
Ref Expression
modqmul12d  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )

Proof of Theorem modqmul12d
StepHypRef Expression
1 modqmul12d.1 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 zq 8711 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . 3  |-  ( ph  ->  A  e.  QQ )
4 modqmul12d.2 . . . 4  |-  ( ph  ->  B  e.  ZZ )
5 zq 8711 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  QQ )
64, 5syl 14 . . 3  |-  ( ph  ->  B  e.  QQ )
7 modqmul12d.3 . . 3  |-  ( ph  ->  C  e.  ZZ )
8 modqmul12d.5 . . 3  |-  ( ph  ->  E  e.  QQ )
9 modqmul12d.egt0 . . 3  |-  ( ph  ->  0  <  E )
10 modqmul12d.6 . . 3  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
113, 6, 7, 8, 9, 10modqmul1 9379 . 2  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  C )  mod  E ) )
124zcnd 8470 . . . . 5  |-  ( ph  ->  B  e.  CC )
137zcnd 8470 . . . . 5  |-  ( ph  ->  C  e.  CC )
1412, 13mulcomd 7140 . . . 4  |-  ( ph  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1514oveq1d 5547 . . 3  |-  ( ph  ->  ( ( B  x.  C )  mod  E
)  =  ( ( C  x.  B )  mod  E ) )
16 zq 8711 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  QQ )
177, 16syl 14 . . . 4  |-  ( ph  ->  C  e.  QQ )
18 modqmul12d.4 . . . . 5  |-  ( ph  ->  D  e.  ZZ )
19 zq 8711 . . . . 5  |-  ( D  e.  ZZ  ->  D  e.  QQ )
2018, 19syl 14 . . . 4  |-  ( ph  ->  D  e.  QQ )
21 modqmul12d.7 . . . 4  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
2217, 20, 4, 8, 9, 21modqmul1 9379 . . 3  |-  ( ph  ->  ( ( C  x.  B )  mod  E
)  =  ( ( D  x.  B )  mod  E ) )
2318zcnd 8470 . . . . 5  |-  ( ph  ->  D  e.  CC )
2423, 12mulcomd 7140 . . . 4  |-  ( ph  ->  ( D  x.  B
)  =  ( B  x.  D ) )
2524oveq1d 5547 . . 3  |-  ( ph  ->  ( ( D  x.  B )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
2615, 22, 253eqtrd 2117 . 2  |-  ( ph  ->  ( ( B  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
2711, 26eqtrd 2113 1  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   0cc0 6981    x. cmul 6986    < clt 7153   ZZcz 8351   QQcq 8704    mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator