ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth Unicode version

Theorem opth 3992
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 3991 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 3987 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 19 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5syl5eleq 2167 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 3594 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 14 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 112 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 3576 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2115 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 110 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 3568 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 404 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2115 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 3568 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2115 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prexg 3966 . . . . . . 7  |-  ( ( C  e.  _V  /\  B  e.  _V )  ->  { C ,  B }  e.  _V )
2012, 2, 19sylancl 404 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  e.  _V )
21 prexg 3966 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  { C ,  D }  e.  _V )
228, 21syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  D }  e.  _V )
23 preqr2g 3559 . . . . . 6  |-  ( ( { C ,  B }  e.  _V  /\  { C ,  D }  e.  _V )  ->  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } ) )
2420, 22, 23syl2anc 403 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D }
) )
2518, 24mpd 13 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
26 preq2 3470 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2726eqeq2d 2092 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
28 eqeq2 2090 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2927, 28imbi12d 232 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
30 vex 2604 . . . . . 6  |-  x  e. 
_V
312, 30preqr2 3561 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
3229, 31vtoclg 2658 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
339, 25, 32sylc 61 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
343, 33jca 300 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
35 opeq12 3572 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3634, 35impbii 124 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   {csn 3398   {cpr 3399   <.cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407
This theorem is referenced by:  opthg  3993  otth2  3996  copsexg  3999  copsex4g  4002  opcom  4005  moop2  4006  opelopabsbALT  4014  opelopabsb  4015  ralxpf  4500  rexxpf  4501  cnvcnvsn  4817  funopg  4954  brabvv  5571  xpdom2  6328  enq0ref  6623  enq0tr  6624  mulnnnq0  6640  eqresr  7004  cnref1o  8733  qredeu  10479
  Copyright terms: Public domain W3C validator